Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
        If a/(b+c)+b/(c+a) +c/(a+b)=1 then prove that a^2/(b+c)+b^2/(c+a)+c^2/(a+b)=0
8 months ago

Arun
13831 Points
							Dear student  $\hspace{-.7 cm}Given \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} = 1\;, Multiply both side by a+b+c\\\\\\ So \bigg(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\bigg)\cdot (a+b+c)=a+b+c\\\\\\ \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{c(a+b)}{a+b}=a+b+c\\\\\\ So we get \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b} = 0$  Hope it helps  If you find any difficulty please feel free to ask. RegardsArun (askIITians forum expert)

8 months ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »

## COUPON CODE: SELF10

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions