MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu

General Theorems on Differentiation

 

General Theorems on Differentiation

  • d/dx (c) = 0

  • d/dx [a f(x)+b g(x) ] = af'(x) + b g'(x)

  • d/dx [f(x)g(x) ] = f' (x)g(x) + f(x) g'(x)

  • d/dx [f(x)/g(x)] = (g(x) f'(x) - f(x) g'(x))/[g(x) ]2

  • d/dx [f(x)g(x) ] = f(x)g(x) [g(x)/f(x) f'(x) + g' (x)lnf(x)]


Chain Rule

If y = f(u) and u = g(x), then dy/dx = dy/dx.du/dx = f'g(x) g'(x)

e.g. Let y = [f(x)]n. We put u = f(x). so that y = un.

Therefore, using chain rule, we get

dy/dx = dy/dx.du/dx = nu(n-1) [f'(x)](n-1) f' (x)
 

Illustration:

Differentiate

y = sec-1 by ab- nitio

sec y=x                              ...... (i)

Let Δx be increment in x and Δy be the corresponding increment in y

x + Δx = sec (y+Δy)                ...... (ii)

(Equation (ii)-Equation (i)) gives

Δx = sec (y + Δy)- sec y

Δx/Δy=(sec (y+?y)- secy)/(? y)

Applying limits Δ y-->0

lim?y→0 ?x/?y=lim?y→0 ( sec (y+?y)-secy)/(? y) (0/0 form)

dx/dy=lim?y→0 (2 sin?y/2 sin(y+?y/2) )/(?y.cosy cos(y+?y) )

=lim?y→0 (sin?y/s/(?y/2)) × lim?y→0 sin(y+?y/2)/cosy cos(y+?y)

--> (dx )/(dy ) = siny/(cos2 y)

--> (dx )/(dy ) = 1/(dx/dy) =(cos2 y)/siny

= 1/tany secy =1/(x √(x2-1)) (wrong)

sec y = x                   (Given)

1+ tan2y = sec2 y

tan y = ± √(sec2 y-1)

= ± √(x2 -1)

Sec-1 x = y ? (0, Π)

--> (dx )/(dy ) = 1/(|x| √(x2-1))

To read more, Buy study materials of Methods of Differentiation comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution