Flag Trigonometry> Simplify cos(a)cos(2a)cos(3a)...cos(999a)...
question mark

Simplify cos(a)cos(2a)cos(3a)...cos(999a) if a=(2pi)/1999

gdhh , 8 Years ago
Grade 11
anser 2 Answers
Nishant Vora

Last Activity: 8 Years ago

multiply divide by 2 sina in numerator nd denomenator
so you will get


\frac{1}{2^{999}} \frac{sin (2*999)a}{sin a}

\frac{1}{2^{999}} \frac{sin (1998)a}{sin a}
\frac{1}{2^{999}} \frac{sin (1999a - a)}{sin a}
\frac{1}{2^{999}} \frac{sin (2 pi - a)}{sin a}
-\frac{1}{2^{999}}

Piyush

Last Activity: 6 Years ago

Let P=cosa cos2a cos3a.......cos999a 
Let Q=sina sin2a sin3a............sin999a
Now,
PQ×2^999=(2sinacosa)(2sin2acos2a)….......(2sin999acos999a)
=sin2a sin4a sin6a........sin1998a
=(sin2a sin4a....sin1998a){-sin(2π-100a)}{-sin(2π-1002a)}......{-sin(2π-1988a)}
=sin2a sin4a....sin998a sin999asin997a....sinx 
=Q
Hence P=1/2^999
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free