Flag Trigonometry> IN ANY TRIANGLE PROVE THAT (a+b+c) (tanA/...
question mark

IN ANY TRIANGLE PROVE THAT (a+b+c) (tanA/2+tanB/2)=2c cotc/2?

RIYAZSHAIK , 9 Years ago
Grade 11
anser 1 Answers
Muthu Kumar
$$2s=a+b+c$$ We know, $$\tan (A/2) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$ Similarly, $$\tan (B/2) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$ Now, $$(a+b+c)(\tan (A/2)+\tan (B/2)=(a+b+c)(\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}+\sqrt{\frac{(s-a)(s-c)}{s(s-b)}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\sqrt{\frac{s-b}{s-a}}+\sqrt{\frac{s-a}{s-b}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\frac{s-b+s-a}{\sqrt{(s-b)(s-a}})$$ $$=2c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$$ $$=2c\tan (C/2)$$2s=a+b+c" id="MathJax-Element-741-Frame" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; outline: 0px; font-size: 14px; vertical-align: middle; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial; font-family: proxima_nova_rgregular, "helvetica neue", helvetica, arial, sans-serif; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;" tabindex="0">$$2s=a+b+c$$ We know, $$\tan (A/2) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$ Similarly, $$\tan (B/2) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$ Now, $$Q=(a+b+c)(\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}+\sqrt{\frac{(s-a)(s-c)}{s(s-b)}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\sqrt{\frac{s-b}{s-a}}+\sqrt{\frac{s-a}{s-b}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\frac{s-b+s-a}{\sqrt{(s-b)(s-a}})$$ $$=2c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$$ $$=2c\tan (C/2)$$$$2s=a+b+c$$ We know, $$\tan (A/2) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$ Similarly, $$\tan (B/2) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$ Now, $$Q=(a+b+c)(\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}+\sqrt{\frac{(s-a)(s-c)}{s(s-b)}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\sqrt{\frac{s-b}{s-a}}+\sqrt{\frac{s-a}{s-b}})$$ $$=2s\sqrt{\frac{s-c}{s}}(\frac{s-b+s-a}{\sqrt{(s-b)(s-a}})$$ $$=2c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$$ $$=2c\tan (C/2)$$
 
Last Activity: 8 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments