Flag Trigonometry> Given Sinx^3+cosx^3+ tanx^3=0 ThenSinx^9+...
question mark

Given Sinx^3+cosx^3+ tanx^3=0 ThenSinx^9+cosx^9+tanx^9=?A 3sinx B3sinx^2 C 9sinx^3 D 3sinx^6

Vaibhav , 8 Years ago
Grade 10
anser 1 Answers
Faiz

Last Activity: 8 Years ago

The solution is very simple:Given : sin³x + cos³x + tan³x = 0For easy understanding let sin³x = a, cos³x = b and tan ³x = c...Identity: a³ + b³ + c³ - 3abc = ( a+b+c ) ( a² + b² + c² - ab - bc - ca )If in this a+b+c = 0 then a³ + b³ + c³ = 3 abcHence using this a³ + b³ + c³ = sin^9 x + cos^9 x + tan^9 x which is equal to 3 abc = 3 sin³x * cos³ x * tan³x....Tan x is sin x / cos x..So sin^9 x + cos^9 x + tan^9 x = 3 sin^6 x option D is the answer....

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments