Aman
Last Activity: 8 Years ago
Actually I think that the question is wrongly typed.It should probably go this way I think:acosθ+bsinθ=c, prove that a sinθ-b cosθ=±(a^2+b^2-c^2 )^(1/2)If this is the desired question, then the solution is as follows: a cosθ+b sinθ=csquaring both sides,weget(a cosθ+b sinθ )^2=c^2a^2 〖cos〗^2θ+b^2 〖sin〗^2θ+2ab sinθ cosθ=c^2….(1) Now let a sinθ-b cosθ=ksquaring both sides, we geta^2 〖sin〗^2θ+b^2 〖cos〗^2θ-2ab sinθ cosθ=k^2….(2) Adding (1)and (2)a^2 (〖cos〗^2θ+〖sin〗^2θ )+b^2 (〖cos〗^2θ+〖sin〗^2θ )=c^2+k^2a^2+b^2=c^2+k^2k=±(a^2+b^2-c^2 )^(1/2)