Flag Integral Calculus> INTEGRATION SIKHO...
question mark

11 ) integ [tan 2θ / √cos6θ + sin6θ ] dθ

12 ) integ [ cos2x / (1 + tanx) ] dx


13 ) integ [ { ln (ln (1 + x)/(1 - x) ) ) } / ( 1 - x2 ) ] dx


14 ) integ { [ (x/e)x + (e/x)x ] lnx } dx

UTTARA P , 15 Years ago
Grade
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
I = \int \frac{cos^{2}x}{1+tanx}dx
I = \int \frac{cos^{2}x.sec^{4}x}{(1+tanx).sec^{4}x}dx
I = \int \frac{sec^{2}x}{(sec^{4}x+sec^{4}x.tanx)}dx
I = \int \frac{sec^{2}x}{(1+tanx)(1+tan^{2}x)^{2}}dx
tanx = t
sec^{2}x.dx = dt
I = \int \frac{1}{(1+t)(1+t^{2})^{2}}dt
I = \int (\frac{1-t}{4.(1+t^{2})}+\frac{1-t}{2.(1+t^{2})^{2}}+\frac{1}{4.(t+1)})dt
I = \frac{(t^{2}+1).(-log(t^{2}+1))+2log(t+1)+4tan^{-1}t+sin(2tan^{-1}t)+2}{8(t^{2}+1)}I = \frac{1}{8}(4x+sin2x+cos2x+2log(sinx+cosx))+constant
I = \int \frac{tan2\theta }{\sqrt{cos^{6}\theta +sin^{6}\theta} }d\theta
I = tanh^{-1}(\frac{\sqrt{3cos4\theta +5}}{\sqrt{2}}) + constant
I = \int \frac{log(log(\frac{1+x}{1-x}))}{1-x^{2}}.dx
log(\frac{1+x}{1-x}) = t
I = \frac{1}{2}\int log(t) . dt
I = \frac{1}{2}t.log(t) - \frac{t}{2}+constant
I = \frac{1}{2}log(\frac{1+x}{1-x})(log(log(\frac{1+x}{1-x})-1))+constant
There is some mistakes in last integrand.
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments