 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
what is intigration of 1/(1+x^4)

```
10 years ago

```							its lower limit is 0 and pper limit is infinity
```
10 years ago
```							I = 1/1+x4 dx
2I = [  2/1+x4]dx
divide nume and denom by  x2
2I = [ 2/x2 /(x2 +1/x2)]dx
2I = (1/x2+1) /[x2+1/x2] dx   +  (1/x2 -1)/[x2+1/x2]dx
2I                            =          (1+1/x2)/[(x-1/x)2+2] dx                 +       (1/x2 -1)/[(x+1/x)2-2] dx
2I                            =                            I1                                     +                     I2
2I                           =              I1 = 1+1/x2 /[(x-1/x)2+2]dx                  +                  I2 =  (1/x2 -1)/[(x+1/x)2 -2]dx
2I                           =                put  here   (x-1/x) = t                               &                      put  (x+1/x) = u
2I                           =                  I1 = dt/[t2+2]                                           +                 I2 = -dt/[u2 -2]
2I                            =        I1 = [tan-1(t/sqrt2)]/sqrt2                      +                 I2 = log(u+sqrt2/u-sqrt2)/2sqrt2      +c
2I                           =       I1 = 1/sqrt2.tan-1(x2-1/xsqrt2)          +         I2 = 1/2sqrt2 .log(x2+1+xsqrt2/x2+1-xsqrt2) + c
this is the required result

```
10 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Integral Calculus

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 51 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions