Flag Differential Calculus> lim x->0 [1/sin^4x- 1/x^4]=?
question mark

lim x->0 [1/sin^4x- 1/x^4]=?

kuldeep kushwaha , 10 Years ago
Grade
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:Limit is infinite at x = 0
Sol:
L = \lim_{x\rightarrow 0}\frac{1}{sin^{4}x}-\frac{1}{x^{4}} = \infty
L = \lim_{x\rightarrow 0}\frac{x^{4}-sin^{4}x}{x^{4}.sin^{4}x}
This is zero by zero form. You can go by L’Hospital rule from here.
L = \lim_{x\rightarrow 0}\frac{1-\frac{sin^{4}x}{x^{4}}}{sin^{4}x}
We should go by series expansion route, that would be easily differentiable,
L = \lim_{x\rightarrow 0}\frac{1-\frac{(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-....)^{4}}{x^{4}}}{(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-....)^{4}}
L = \lim_{x\rightarrow 0}\frac{1-\frac{(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-....)^{4}}{1}}{(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-....)^{4}}
L = \lim_{x\rightarrow 0}\frac{-4{(1-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-....)^{3}(\frac{-2x}{3!}+\frac{4x^{3}}{5!}-...)}}{4(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-....)^{3}(1-\frac{3x^{2}}{3!}+\frac{5x^{4}}{5!}-...)}
L = \lim_{x\rightarrow0}\frac{(\frac{-2x}{3!}+\frac{4x^{3}}{5!}-....)}{x^{3}.cosx}
L = \lim_{x\rightarrow0}\frac{(\frac{-2}{3!}+\frac{4x^{2}}{5!}-....)}{x^{2}.cosx}=\infty
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...