#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Click to Chat

1800-1023-196

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# Show that the rectangle of maximum perimeter which can be incribed in a circle of radius a is a square of side  a√2.

## 1 Answers

9 years ago

Let the radius of the circle to be R.

When a rectangle is inscribed in a circle , the diameter of the circle will act as the diagonal for the rectangle.

So assume that the sides of the rectangle to be a, b

applying pythagoras theorm

Then a2 + b2 = 4R2  ===> b = (4R2 - a2 )1/2

The Perimeter of the rectangle is 2(a+b) = 2 (a + (4R2 - a2 )1/2)

differetiating the equattion with respect to a and put it equal to 0

= 2(1- (2a)/2(4R2 - a2 )1/2)=0

= 2(1- (a)/(4R2 - a2 )1/2)=0

= 1= (a)/(4R2 - a2 )1/2

= a=(4R2 - a2 )1/2

= a2= (4R2 - a2 )

= 2a2 = 4R2

= a = R(2)1/2

## ASK QUESTION

Get your questions answered by the expert for free