Guest

Polar of origin (0,0) w.r.t the circle x^2+y^2+2lambda x+2mu.y+c=0 touches the circle x^2+y^2=r^2 if.... A. c=r(lambda^2+mu^2) B.r=c(lambda^2+mu^2) C.c^2=r^2(lambda^2+mu^2) D.r^2=c^2(lambda^2+mu^2)

Polar of origin (0,0) w.r.t the circle x^2+y^2+2lambda x+2mu.y+c=0 touches the circle x^2+y^2=r^2 if....
A. c=r(lambda^2+mu^2)
B.r=c(lambda^2+mu^2)
C.c^2=r^2(lambda^2+mu^2)
D.r^2=c^2(lambda^2+mu^2)

Grade:

1 Answers

Arun
25758 Points
3 years ago
Dear student
 
You can Solve the polar by the equation T = 0
 
Now put the condition of tangency.
You will gt the desired result

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free