Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping
Grade: 11
normal at 4 points (x1,y1),(x2,y2),(x3,y3),(x4,y4) of an ellipse are concurrent then  prove (x1+x2+x3+x4)(1/x1+1/x2+1/x3+1/x4)=4
3 years ago

Answers : (1)

mycroft holmes
272 Points
If the foot of the normal on the ellipse is (a \cos \theta, b \sin \theta), then the equation of the normal is ax \sec \theta - by \csc \theta = a^2-b^2
Say it passes through the point (h, k), then we have ah \sec \theta - bk \csc \theta = a^2-b^2

Let A = ah, B = a^2-b^2, C= bk,
Then we have (A \sec \theta - B) = C \csc \theta, squaring and writing RHS purely in terms of secant, we get
A^2 \sec^2 \theta -2AB \sec \theta+ B^2 = C^2 \frac{\sec^2 \theta}{\sec^2 \theta -1} 
which after clearing of denominators, we get a quartic 
A^2 \sec^4 \theta -2AB \sec^3 \theta+ (B^2-A^2-C^2) \sec^2 \theta + 2AB \sec \theta - B^2 = 0
Hence \sum \sec \theta_i = \frac{2AB}{B^2} = \frac{2B}{A}, \sum \cos \theta_i = \sum \frac{1}{\sec \theta_i} = \frac{2A}{B}
Thus we obtain \sum \sec \theta_i \times \sum \cos \theta_i = \left( \frac{2A}{B}\right ) \times \left( \frac{2B}{A}\right ) = \boxed{4}
3 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies

Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution

Course Features

  • 53 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions

Ask Experts

Have any Question? Ask Experts

Post Question

Answer ‘n’ Earn
Attractive Gift
To Win!!! Click Here for details