Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-5470-145

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

find the eccentricity of the ellipse whose latusrectum makes rightangle at the centre?

5 years ago

If the coordinates of the required point on the ellipse (1) be (√6 cos Φ, √2 sin Φ) then the tangent at the point is x/√6 cos Φ + y/√2 sin Φ = 1 ...... (2)

Slope of (2) = (-cos Φ)/√6 ×√2/(sin Φ ) = (-√2)/√6 cot Φ

As the tangents are equally inclined to the axes so we have

-1/√3 cot Φ = + tan 45o = + 1

Hence, tan Φ = + 1/√3

The coordinates of the required points are

(±√6 × √3/2, ±√2 × 1/2) and (±√6 × √3/2, ±√2 × 1/2)

= (± (3√2)/2, ±1/√2) and (± (3√2)/2, ± 1/√2)

Again the length of perpendicular from (0, 0) and (2),

= (√6.√2)/√(2 cos2Φ + 6 sin2Φ)

= (2√3)/√((2.3/4) + (6.1/4) )

= (2√3)/√3

= 2.