Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

a chain is lying on a rough table with a friction 1/n of its length hanging down from the edge of table if it is just of the point of sliding down from the table then the coefficient of friction between the table and the chain is

a chain is lying on a rough table with a friction 1/n of its length hanging down from the edge of table if it is just of the point of sliding down from the table then the coefficient of friction between the table and the chain is

Grade:11

1 Answers

Rajdeep
231 Points
2 years ago
HELLO THERE!
 
Let the total length of the chain be L.
Mass of length L = M.
 
So, mass of unit length of the chain = \frac{M}{L}
 
It is given that,  \frac{1}{n} of the chain is hanging down from the table.
 
So, length of chain that is hanging = \frac{L}{n}
 
Mass of the hanging part = \frac{M}{L}\times \frac{L}{n} = \frac{M}{n}
 
Length of the chain which is on the table = L - \frac{L}{n} = L(1-\frac{1}{n}) = L(\frac{n-1}{n})
 
Mass of the chain which is on the table = \frac{M}{L} \times L(\frac{n-1}{n}) = M(\frac{n-1}{n})
 
Now, Force acting downwards due to weight of the chain will be equal to the frictional force acting on the part of chain placed on the table.
 
Force acting downwards due to weight of the chain \frac{M}{n}g
 
Frictional force acting on the chain which is on the table = M(\frac{n-1}{n})\mu
 
Now,
M(\frac{n-1}{n})\mu = \frac{M}{n}g \\\\or, \mu = \frac{g}{n-1}
 
This is your answer...
THANKS!

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free