Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Find the value
x3 + x − 3x2 − 3
Taking x common in x3 + x
= x(x2 + 1) − 3x2 − 3
Taking - 3 common in − 3x2 − 3
= x(x2 + 1) − 3(x2 + 1)
Now, we take (x2 + 1) common
= (x2 + 1) (x - 3)
∴ x3 + x − 3y2 − 3 = (x2 + 1)(x - 3)
a(a + b)3 − 3a2b(a + b)
Taking (a + b) common in the two terms
= (a + b){a(a + b)² - 3a²b}
Now, using (a + b)2= a2 + b2 + 2ab
= (a + b){a(a2 + b2 + 2ab) − 3a2b}
= (a + b){a3 + ab2 + 2a2b − 3a2b}
= (a + b){a3 + ab2 − a2b}
= (a + b)p{a2 + b2 − ab}
= p(a + b)(a2 + b2 − ab)
∴ a(a + b)3 − 3a2b(a + b)
= a(a + b)(a2 + b2 − ab)
x(x3 − y3) + 3xy(x − y)
Elaborating x3 − y3 using the identity
x3 − y3 = (x − y)(x2 + xy + y2)
= x(x − y)(x2 + xy + y2) + 3xy(x − y)
Taking common x(x - y) in both the terms
= x(x − y)(x2 + xy + y2 + 3y)
∴ x(x3 − y3) + 3xy(x − y)
a2x2 + (ax2 + 1)x + a
We multiply x(ax2 + 1) = ax3 + x
= a2x2 + ax3 + x + a
Taking common ax2 in (a2x2 + ax3) and 1 in (x + a)
= ax2(a + x) + 1(x + a)
=ax2(a + x) + 1(a + x)
Taking (a + x) common in both the terms
= (a + x)(ax2 + 1)
∴ a2x2 + (ax2 + 1)x + a = (a + x)(ax2 + 1)
x2 + y − xy − x
On rearranging
x2 − xy − x + y
Taking x common in the (x2 − xy) and -1 in(-x + y)
= x(x - y) - 1 (x - y)
Taking (x - y) common in the terms
= (x - y)(x - 1)
∴ x2 + y − xy − x = (x - y)(x - 1)
x3 − 2x2b + 3xy2 − 6y3
Taking x2 common in (x3 − 2x2y) and +3y2 common in (3xy2 − 6y3)
= x2(x − 2y) + 3y2(x − 2y)
Taking (x - 2y) common in the terms
= (x − 2y)(x2 + 3y2)
∴ x3 − 2x2y + 3xy2 − 6y3 = (x − 2y)(x2 + 3y2)
6ab − b2 + 12ac − 2bc
Taking b common in (6ab − b2) and 2c in (12ac - 2bc)
= b(6a - b) + 2c (6a - b)
Taking (6a - b) common in the terms
= (6a - b)(b + 2c)
∴ 6ab − b2 + 12ac − 2bc = (6a - b)(b + 2c)
[x2 + 1/x2] − 4[x + 1/x] + 6
= x2 + 1/x2 − 4x − 4/x + 4 + 2
= x2 + 1/x2 + 4 + 2 − 4x − 4x
= (x2) + (1/x)2 + (−2)2 + 2 × x × 1/x + 2 × 1/x × (−2) + 2(−2)x
Using identity
x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
We get,
= [x + 1/x + (−2)]2
= [x + 1/x − 2]2
= [x + 1/x − 2][x + 1/x − 2]
∴ [x2 + 1/x2] − 4[x + 1/x] + 6 = [x + 1/x − 2][x + 1/x − 2]
x(x - 2)(x - 4) + 4x - 8
= x(x - 2)(x - 4) + 4(x - 2)
Taking (x - 2) common in both the terms
=(x - 2){x(x - 4) + 4}
=(x - 2){x2 − 4x + 4}
Now splitting the middle term of x2 − 4x + 4
= (x - 2){x2 − 2x − 2x + 4}
= (x - 2){x( x - 2) -2(x - 2)}
= (x - 2){(x - 2)(x - 2)}
= (x - 2)(x - 2)(x - 2)
= (x − 2)3
∴ x(x - 2)(x - 4) + 4x - 8 = (x − 2)3
(x + 2)(x2 + 25) − 10x2 − 20x
(x + 2)(x2 + 25) - 10x (x + 2)
Taking (x + 2) common in both the terms
= (x + 2)(x2 + 25 − 10x)
= (x + 2)(x2 − 10x + 25)
Splitting the middle term of (x2 − 10x + 25)
= (x + 2)(x2 − 5x − 5x + 25)
= (x + 2){x(x - 5)-5 (x - 5)}
= (x + 2)(x - 5)(x - 5)
∴ (x + 2)(x2 + 25) − 10x2 - 20x = (x + 2)(x - 5)(x - 5)
2a2+2√6ab +3b2
Using the identity (p + q)2 = p2 + q2 + 2pq
(a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a)
Let (a - b + c) = x and (b - c + a) = y
= x2 + y2 + 2xy
Using the identity (a + b)2 = a2 + b2 + 2ab
= (x + y)2
Now, substituting x and y
(a - b + c + b − c + a)2
Cancelling -b, +b & + c, -c
= (2a)2
= 4a2
∴ (a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a) = 4a2
a2 + b2 + 2(ab + bc + ca)
= a2 + b2 + 2ab + 2bc + 2ca
= (a + b)2 + 2bc + 2ca
= (a + b)2 + 2c(b + a)
Or (a + b)2 + 2c(a + b)
Taking (a + b) common
= (a + b)(a + b + 2c)
∴ a2 + b2 + 2(ab + bc + ca) = (a + b)(a + b + 2c)
4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2
Let(x - y) = x,(x + y) = y
= 4x2 − 12xy + 9y2
Splitting the middle term - 12 = – 6 - 6 also 4 × 9 = −6 × − 6
= 4x2 − 6xy − 6xy + 9y2
= 2x(2x - 3y) -3y(2x - 3y)
= (2x - 3y)(2x - 3y)
= (2x − 3y)2
Substituting x = x - y & y = x + y
= [2(x − y) − 3(x + y)]2 = [2x - 2y - 3x - 3y]2
= (2x - 3x - 2y - 3y)²
= [−x − 5y]2
= [(−1)(x + 5y)]2
= (x + 5y)2 [? (-1)2 = 1]
∴ 4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2 = (x + 5y)2
a2 − b2 + 2bc − c2
a2 − (b2 − 2bc + c2)
Using the identity (a − b)2 = a2 + b2 − 2ab
= a2 − (b − c)2
Using the identity a2 − b2 = (a + b)(a − b)
= (a + b - c)(a - (b - c))
= (a + b - c)(a - b + c)
∴ a2 − b2 + 2bc − c2 = (a + b - c)(a - b + c)
a2 + 2ab + b2 − c2
= (a + b)2 − c2
Using the identity p2 − q2 = (p + q)(p − q)
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 − c2 = (a + b + c)(a + b - c)
xy9 − yx9
= xy(y8 − x8)
= xy((y4)2 − (x4)2)
Using the identity p2 − q2 = (p + q)(p - q)
= xy(y4 + x4)(y4 − x4)
= xy(y4 + x4)((y2)2 − (x2)2)
= xy(y4 + x4)(y2 + x2)(y2 − x2)
= xy(y4 + x4)(y2 + x2)(y + x)(y − x)
= xy(x4 + y4)(x2 + y2)(x + y)(−1)(x − y)
∴ (y − x) = −1(x − y)
= −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
∴ xy9 − yx9 = −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
x4 + x2y2 + y4
Adding x2y2 and subtracting x2y2 to the given equation
= x4 + x2y2 + y4 + x2y2 − x2y2
= x4 + 2x2y2 + y4 − x2y2
= (x2)2 + 2 × x2 × y2 + (y2)2 − (xy)2
= (x2 + y2)2 − (xy)2
= (x2 + y2 + xy)(x2 + y2 − xy)
∴ x4 + x2y2 + y4 = (x2 + y2 + xy)(x2 + y2 − xy)
x2 − y2 − 4xz + 4z2
On rearranging the terms
= x2 − 4xz + 4z2 − y2
= (x)2 − 2 × x × 2z + (2z)2 − y2
Using the identity x2 − 2xy + y2 = (x − y)2
= (x − 2z)2 − y2
= (x − 2z + y)(x − 2z − y)
∴ x2 − y2 − 4xz + 4z2 = (x − 2z + y)(x − 2z − y)
Splitting the middle term,
= 2x2 − x2 − x3 + 1/12
[∴ −5/6 = −1/2 − 1/3 also −1/2 × −1/3 = 2 × 1/12]
= x(2x − 1/2) − 1/6(2x − 1/2)
= (2x − 1/2)(x − 1/6)
∴ 2x2 − 56x + 1/12 = (2x − 1/2)(x − 1/6)
= x2 + x/7 + x/5 + 1/35
= x(x + 1/7) + 1/5(x + 1/7)
= (x + 1/7)(x + 1/5)
21x2 − 2x + 1/21
Using the identity (x - y)2 = x2 + y2 - 2xy
9(2a − b)2 − 4(2a − b) − 13
Let 2a - b = x
= 9x2 − 4x − 13
= 9x2 − 13x + 9x − 13
= x(9x − 13) + 1(9x − 13)
= (9x − 13)(x + 1)
Substituting x = 2a - b
= [9(2a − b) − 13](2a − b + 1)
= (18a − 9b − 13)(2a − b + 1)
∴ 9(2a − b)2 − 4(2a − b) − 13 = (18a − 9b − 13)(2a − b + 1)
7(x − 2y)2 − 25(x − 2y) + 12
Let x - 2y = P
= 7P2 − 25P + 12
= 7P2 − 21P − 4P + 12
= 7P(P − 3) − 4(P − 3)
= (P − 3)(7P − 4)
Substituting P = x - 2y
= (x − 2y − 3)(7(x − 2y) − 4)
= (x − 2y − 3)(7x − 14y − 4)
∴ 7(x − 2y)2 − 25(x − 2y) + 12 = (x − 2y − 3)(7x − 14y − 4)
2(x + y)2 − 9(x + y) − 5
Let x + y = z
= 2z2 − 9z − 5
= 2z2 − 10z + z − 5
= 2z(z − 5) + 1(z − 5)
= (z − 5)(2z + 1)
Substituting z = x + y
= (x + y − 5)(2(x + y) + 1)
= (x + y − 5)(2x + 2y + 1)
∴ 2(x + y)2 − 9(x + y) − 5 = (x + y − 5)(2x + 2y + 1)
Give the possible expression for the length & breadth of the rectangle having 35y2 − 13y − 12 as its area.
Area is given as 35y2 − 13y − 12
Area = 35y2 + 218y − 15y − 12
= 7y(5y + 4) − 3(5y + 4)
= (5y + 4)(7y − 3)
We also know that area of rectangle = length × breadth
∴ Possible length = (5y + 4) and breadth = (7y − 3)
Or possible length = (7y − 3) and breadth = (5y + 4)
What are the possible expression for the cuboid having volume 3x2 − 12x.
Volume = 3x2 − 12x
= 3x(x − 4)
= 3×x(x − 4)
Also volume = Length × Breadth × Height
∴ Possible expression for dimensions of cuboid are = 3, x, (x − 4)
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Chapter 5: Factorization of Algebraic Expressions...