Join now for JEE/NEET and also prepare for Boards Learn Science & Maths Concepts for JEE, NEET, CBSE @ Rs. 99! Register Now
Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
As we have discussed earlier that derivative is an important topic of calculus, similarly Applications of Derivatives also holds great importance as it fetches many direct questions in the IT JEE. With a bit of practice it is very easy to master this topic and there are some fixed patterns of questions asked from this topic. This section is the most scoring part of the JEE Mathematics syllabus.
This chapter covers various important topics like:
Motion in Straight Line
Geometrical Meaning of Derivative at Point
Monotonicity
Concept of Local Maxima and Local Minima
Global Maxima and Minima
Rolle Theorem and Lagrange Mean Value Theorem
Solved Examples of Applications of Derivatives
We just give here an outline of some of the topics as they will be discussed in detail in the coming sections:
Let AB be the secant line passing through the points (x, f(x)) and (x +? x, f(x+?x)). If B→A i.e. ?x approaches zero, the secant approaches the tangent at (x, f(x)). Hence, when ?x approaches zero, the slope of the tangent is the limit of the slope of the secant.
Hence, the derivative f'(x) can be interpreted as the slope of the tangent at point (x, y) on the graph of function y = f(x). From this interpretation, we get the following results:
(i) When a function is increasing on some interval, it is obvious that the slope of the tangent is positive at every point of that interval due to which its derivative is positive.
(ii) Similarly, in case a function is decreasing on some interval, the derivative is negative as the slope of the tangent is negative at every point of the interval.
Rolle's Theorem. Let f be a function which is differentiable on the closed interval [a, b]. If f(a) = f(b) then there exists a point c in (a, b) such that f '(c) = 0.
Mean Value Theorem. Let f be a function which is differentiable on the closed interval [a, b]. Then there exists a point c in (a, b) such that
f'(c) = {f(b)-f(a)}/ (b-a)
There is a very slight difference between local maxima/minima and global maxima/minima. But it is very important to note that because this topic fetches various questions in the JEE.
Local Maximum: A function f is said to have a local maximum (also termed as relative maximum) at x=a if
f(x) ≤ f(c) , for every x in some open interval around x=c.
Local Minimum: A function f is said to have a relative minimum or a local minimum around x=c if
f(x) ≥ f(c) , for every x in some open interval around x=a.
Global Maximum: A function f is said to have a global maximum (also termed as absolute maximum) at x=a if
f(x) ≤ f(c) , for every x in the domain under consideration
Global Minimum: A function f is said to have a absolute minimum or a global minimum around x=c if
f(x) ≥ f(c) , for every x in the whole domain under consideration.
Illustration:
Find the absolute extrema and relative extrema for the following functions.
f(x) = x^{3} on [-2,2].
Solution:
We first draw the graph of the function so that the picture becomes clear.
Substituting x=2 in the given function we get the function has absolute maximum of eight, while absolute minimum is -8 and occurs at x=-2. It is clear that there is no relative extrema.
A function f defined on a subset of real numbers is said to be monotonic if it preserves the order. Mathematically, it is written as
For all x and y, such that x≤ y, if f(x) ≤ f(y), then the function f is said to be monotonically increasing, increasing or non-decreasing.
Similarly, for x≤y, if f(x) ≥ f(y), then the function is monotonically decreasing, decreasing or non-increasing i.e. it reverses the order.
You may refer the Past Papers to get an idea about the types of questions asked.
Consider the function f(x) = 2x^{3}-3x^{2}-12x+1.
Since f(x) is a polynomial function so it is continuous and differentiable everywhere. Hence, finding the derivative we get
f(x)= 6x^{2}-6x-12 =6(x-2)(x+1). So we have
Hence, f(x) is increasing on the intervals (- ∞, -1] and [2,∞ ) and decreasing on the interval [-1,2].
This video will provide you further clarification
Illustration 1: The function y = 2x^{2 }– log |x| is monotonically increasing for values of x ≠ 0 satisfying the inequalities ……. and monotonically decreasing for values of x satisfying…..
Solution: The given function is y = 2x^{2 }– log |x|.
x ∈ (-1/2, 0) ∪ (1/2, ∞), x ∈ (-∞ , -1/2) ∪ (0, ½)
Here, y = 2x^{2} – log x , x >0
2x^{2} – log (-x) , x < 0
So this implies
dy/dx = 4x – 1/x, x >0
= 4x – 1/x, x < 0
Hence, dy/dx = 4x^{2} – 1/x, x ∈ R – {0}
= (2x -1) (2x +1)/x
Therefore, it is increasing when x ∈(-1/2, 0) ∪ (1/2, ∞)
And decreasing when x ∈ (-∞, -1/2) ∪ (0, ½).
Illustration 2: The maximum value of
(cos α_{1}). (cos α_{2})…. (cos α_{n}), under the restrictions 0 ≤ α_{1}, α_{2},… , α_{n }≤ π/2
(cot α_{1}). (cot α_{2})…. (cot α_{n}) = 1 is
1. 1/2^{n/2 } 2. 1/2^{n}
3. 1/2n 4. 1
Solution: Given cot α_{1}. cot α_{2}….....cot α_{n} = 1
Then, cos α_{1}/sin α_{1} . cos α_{2}/sin α_{2} . cos α_{3}/sin α_{3} ….. cos α_{n}/sin α_{n} = 1.
Hence, cos α_{1}. cos α_{2}…. cos α_{n} = k …….. (1)
and sin α_{1}. sin α_{2}……. sin α_{n} = k …….. (2)
by multiplying equations (1) and (2) we get,
(cos α_{1}. cos α_{2}…… cos α_{n}) x (sin α_{1}. sin α_{2}……. sin α_{n}) = k^{2}
Then k^{2} = 1/ 2.2.2…….. n times . (2 sin α_{1}. cos α_{1}) (2 sin α_{2}. cos α_{2}) (2 sin α_{3}. cos α_{3})………… (2 sin α_{n}. cos α_{n})
Hence, k^{2} = 1/2^{n} (sin 2α_{1}).(sin 2α_{2})…….. (sin 2α_{n})
≤ 1/2^{n} sin 2α_{i} ≤ 1 for all 1≤ i ≤ n
Hence, k ≤ 1/2^{n/2}. Hence the correct option is (1).
Illustration 3: If f(x) = x^{a} log x and f(0) = 0, then the value of a for which the Rolle’s theorem can be applied in [0,1] is
1. -2 2. -1
3. 0 4. ½
Solution: In order to satisfy the Rolle’s Theorem, the function needs to be continuous in [0, 1].
So, lim _{x→0+} f(x) = f(0)
lim _{x→0+} log x/ x^{-a} = 0.
lim _{x→0+} (1/x)/-ax^{-a-1} = 0.
lim _{x→0+} x^{a}/ a = 0.
This clearly implies that a > 0.
Now, ∀ a > 0, f(x) is differential in (0, 1) and f (1) = 0 = f (0).
To read more, Buy study materials of Applications of Derivatives comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Rate of Change of Quantities Table of Content...
Motion in a Straight Line Table of Content...
Download IIT JEE Solved Examples of Applications...
Mean Value Theorem Table of Content History of...
Objective Type Questions 42. Total number of...
Increasing and Decreasing Functions Table of...
Geometrical Meaning of Derivative at Point The...
Approximations Table of contents Introduction to...
Introduction of Application of Derivatives Table...
Monotonicity Table of Content Monotonic Function...
Concept of Local Maximum and Local Minimum Local...