Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details
Get extra Rs. 3,180 off
USE CODE: SELF20

```IIT JEE 2009 Mathematics Paper2 Code 1 Solutions

6.     For function f(x) = s cos 1/x    x > 1,

(A)    for atleast one x in interval [1, ∞), f(x + 2) - f(x) < 2

(B)    limx-->∞ f'(x) = 1

(C)    for all x in the interval [1, ∞), f(x + 2) - f(x) > 2

(D)    f'(x) is strictly decreasing in the interval [1, ∞)

Sol.   (B, C, D)

For f(x) = x cos1/x  x > 1

f'(x) = cos(1/x) + 1/x sin 1/x --> 1 for x --> ∞

also f"(x) = 1/x2 sin 1/x - 1/x2 sin 1/x - 1/x3 cos 1/x

= - 1/x3 cos 1/x < 0 for x > 1

=> f'(x) is decreasing for [1, ∞)

=> f'(x + 2) < f'(x). Also, limx-->∞ (x + 2) - f(x)

= -------------------------- = 2

\ f(x+2) - f(x) > 2  for all  x > 1

7.     For 0 < q < Π/2, the solution(s) of

∑m=16 cosec (θ +(m-1)π /4)cosec(θ +mπ/4) = 4√2   is(are)

(A) π/4

(B) π/6

(C) π/12

(D) 5π/12

Sol.   (C, D)

Given solutions

=>  √2[cot θ - cot (θ + π/4) + cot(θ + π/4) - cot(θ + π/2) +...

...+ cot(θ + 5π/4) - cot(θ + 3π/2)] = 4√2

=> tan θ + cot θ = 4 => tan θ = 2 + √3

=> Hence , θ = Π/12 or 5Π/12

<< Back || Next >>
```

## COUPON CODE: SELF20

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution