Flag Trigonometry> sin^-1x+sin^-1y+sin^-1z=pi/2 then find x^...
question mark

sin^-1x+sin^-1y+sin^-1z=pi/2 then find x^2+ y^2+z^2+ 2xyz =?

Sayan Chakraborty , 8 Years ago
Grade 12
anser 3 Answers
Bond

Last Activity: 6 Years ago

sin-¹(x)+sin-¹(y)+sin-¹(z)=π/2Using sin-¹(a)=π/2-cos-¹(a)π/2-cos-¹(x)+π/2-cos-¹(y)+π/2-cos-¹(z)=π/2cos-¹(x)+cos-¹(y)+cos-¹(z)=πcos-¹(xy-√(1-x²)√(1-y²))=π-cos-¹(z)=cos-¹(-z)=> xy-√(1-x²)(1-y²)=-z√(1-x²)(1-y²)=z+xySquaring both sides1-y²-x²+x²y²=z²+x²y²+2xyzx²+y²+z²+2xyz=1

Bond

Last Activity: 6 Years ago

Answers : (1)sin-¹(x)+sin-¹(y)+sin-¹(z)=π/2 Using sin-¹(a)=π/2-cos-¹(a) π/2-cos-¹(x)+π/2-cos-¹(y)+π/2-cos-¹(z)=π/2 cos-¹(x)+cos-¹(y)+cos-¹(z)=π cos-¹(xy-√(1-x²)√(1-y²))=π-cos-¹(z)=cos-¹(-z) => xy-√(1-x²)(1-y²)=-z √(1-x²)(1-y²)=z+xy Squaring both sides 1-y²-x²+x²y²=z²+x²y²+2xyz x²+y²+z²+2xyz=1

Bond

Last Activity: 6 Years ago

Answers : (1)sin-¹(x)+sin-¹(y)+sin-¹(z)=π/2. Using sin-¹(a)=π/2-cos-¹(a). π/2-cos-¹(x)+π/2-cos-¹(y)+π/2-cos-¹(z)=π/2. cos-¹(x)+cos-¹(y)+cos-¹(z)=π. cos-¹(xy-√(1-x²)√(1-y²))=π-cos-¹(z)=cos-¹(-z). => xy-√(1-x²)(1-y²)=-z. √(1-x²)(1-y²)=z+xy. Squaring both sides. 1-y²-x²+x²y²=z²+x²y²+2xyz. x²+y²+z²+2xyz=1

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free