Flag Trigonometry> In a triangle ABC, prove that acosA+bcosB...
question mark

In a triangle ABC, prove that acosA+bcosB+ccosC=2atanB×cosC

Aman , 7 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 7 Years ago

Dear Aman
 
Yku have typed a wrong RHS
It should be 2a sinB sinC.
 
I have proved here-
A/sinA=b/sinB=c/sinC=k (say)
∴, a=ksinA, b=ksinB, c=ksinC
∴, acosA+bcosB+ccosC
=ksinAcosA+ksinBcosB+csinCcosC
=k/2(2sinAcosA+2sinBcosB+2sinCcosC)
=k/2(sin2A+sin2B+sin2C)
=k/2[{2sin(2A+2B)/2cos(2A-2B)/2}+sin2C]
[∵, sinC+sinD=2sin(C+D)/2cos(C-D)/2]
=k/2[2sin(A+B)cos(A-B)+2sinCcosC]
=k[sin(π-C)cos(A-B)+sinCcos{π-(A+B)}]   [∵, A+B+C=π]
=k[sinCcos(A-B)+sinC{-cos(A+B)}]
=ksinC[cos(A-B)-cos(A+B)]   
=ksinC[2sin(A-B+A+B)/2sin(A+B-A+B)/2]
[∵, cosC-cosD=2sin(C+D)/2sin(D-C)/2]
=ksinC(2sinAsinB)
=2(ksinA)sinBsinC
=2asinBsinC 
 
Regards
Arun (askIITians forum expert)

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments