Join now for JEE/NEET and also prepare for Boards Join now for JEE/NEET and also prepare for Boards. Register Now
Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
If tan Alpha /2and tan beta/2aee the roots of es8x2-26x+15,thencos(Alpha+beta)=? If tan Alpha /2and tan beta/2aee the roots of es8x2-26x+15,thencos(Alpha+beta)=?
8x^2-26x+15=0tan〖α/2〗+tan〖β/2〗=-b/a=26/8=13/4tan〖α/2〗 tan〖β/2〗=c/a=15/8tan〖(α+β)/2〗=(tan〖α/2〗+tan〖β/2〗)/(1-tan〖α/2〗 tan〖β/2〗 )tan〖(α+β)/2〗=(13/4)/(1-15/8)=-26/7cos〖(α+β)〗=(1-tan^2〖(α+β)/2〗)/(1+tan^2〖(α+β)/2〗 )substituting the values, we getcos〖(α+β)〗=(1-(-26/7)^2)/(1+(-26/7)^2 )cos〖(α+β)〗=(49-676)/(49+676)cos〖(α+β)〗=(49-676)/(49+676)cos〖(α+β)〗=(-627)/725
Given that tan(α2) and tan(β2) are the roots of equation 8x2−26x+15=0. So tan(α2)+tan(β2)=−−268=134And, tan(α2)tan(β2)=158Thus, tan(α+β2)= tan((α2)+(β2)) = tan(α2)+tan(β2)1− tan(α2)tan(β2) =1341−(158) =−267Now, cos(α+β)=1− tan2(α+β2)1+ tan2(α+β2) =1−(67649)1+(67649) =−627725⇒cos(α+β)=−627725Given that tan(α2) and tan(β2) are the roots of equation 8x2−26x+15=0. So tan(α2)+tan(β2)=−−268=134And, tan(α2)tan(β2)=158Thus, tan(α+β2)= tan((α2)+(β2)) = tan(α2)+tan(β2)1− tan(α2)tan(β2) =1341−(158) =−267Now, cos(α+β)=1− tan2(α+β2)1+ tan2(α+β2) =1−(67649)1+(67649) =−627725⇒cos(α+β)=−627
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -