For a positive integer n , let fn(θ) =[tanθ/2](1+secθ)(1+sec2θ)(1+sec4θ)...(1+sec2nθ) Then - f2 [pi/16]=1
- f3[pi/32]=1
- f4[pi/64]=1
- f5[pi/128]=1
For a positive integer n , let fn(θ) =[tanθ/2](1+secθ)(1+sec2θ)(1+sec4θ)...(1+sec2nθ) Then
- f2 [pi/16]=1
- f3[pi/32]=1
- f4[pi/64]=1
- f5[pi/128]=1