Flag Trigonometry> Find the value of cos6 sin 24 cos 72
question mark

Find the value of cos6 sin 24 cos 72

laxman , 10 Years ago
Grade 11
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please fing answer to your question below

A = cos(6).sin(24).cos(72)
2sina.cosb = sin(a+b) + sin(a-b)
2sin24.cos6 = sin(24+6) + sin(24-6)
2sin24.cos6 = sin(30) + sin(18)
sin24.cos6 =\frac{ sin(30) + sin(18)}{2}
A = cos(6).sin(24).cos(72)
A = (\frac{ sin(30) + sin(18)}{2}).cos(72)
A = (\frac{ \frac{1}{2} + sin(18)}{2}).cos(72)
A = (\frac{ 1+2sin(18)}{4}).cos(72)
Now to calculate the value of sin(18)
sin(72) = 2sin(36).cos(36)
sin(72) = 2(2sin(18).cos(18)).(1-2sin^{2}(18))
sin(72) = sin(90-18) = cos(18)
cos(18) = 2(2sin(18).cos(18)).(1-2sin^{2}(18))
1 = 4sin(18)(1-2sin^{2}(18))
sin(18) = x
1 = 4x(1-2x^{2})
8x^{3} - 4x + 1 = 0
(2x-1)(4x^{2}+2x-1) = 0
x = ½ is not possible
4x^{2}+2x-1 = 0
x = \frac{\sqrt{5}-1}{4}
sin(18) = \frac{\sqrt{5}-1}{4}
A = (\frac{ 1+2sin(18)}{4}).cos(72)
A = (\frac{ 1+2sin(18)}{4}).sin(18)
A = (\frac{ 1+2.\frac{\sqrt{5}-1}{4}}{4}).\frac{\sqrt{5}-1}{4}
A = (\frac{ \sqrt{5}+1}{8}).\frac{\sqrt{5}-1}{4}
A = \frac{ 5-1}{8.4}
A = \frac{1}{8}

Shyamal

Last Activity: 7 Years ago

=cos6.sin24cos72
=cos6.sin24.cos(90-18)
=1/2[2cos6.sin24}(sin18)
=1/2[ sin(6+24)-sin(6-24)]sin18
=1/2[sin30.sin18+sin18.sin18]
=1/2[1/2*(5^1/2-1)/2) + {(5^1/2-1)/2}^2]
After simplyfing we get,
=1/8
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...