Flag Mechanics> A body of mass 5 grams is launched up on ...
question mark

A body of mass 5 grams is launched up on a rough inclined plane making angle 30° with horizontal. The cofficient of friction between the body and the plane if the time of ascent is half the time of descent:a)3/5 tan60°b)3/5 tan30°c)4/5 tan60°d)4/5 tan30°

Naman Nigam , 5 Years ago
Grade 11
anser 1 Answers
Arun

Last Activity: 5 Years ago

Sign convention-Down the slope(-) and up the slope(+)

-For upward motion,

A = Inclination = 30o.

So, weight component acting down the slope = F1 = -mgsinA

Normal reaction = mgcosA

Coefficient of friction = u

So, frictional force(Acting down the slope) = F2 = -umgcosA

So net force = F1 + F2 = -mg(sinA + ucosA)

Acceleration = -g(sinA + ucosA) = a1

As accn is uniform, eqn of motion are applicable.

Let s = displacement up the slope

Launch velocity = u; ta = time of ascent and td=time of descent

So, ta = 1/2td [Acc. to qts]----------(1)

So, s = uta+ 1/2a1ta2.

or s = uta + 1/2[-g(sinA + ucosA)]ta2.----------(2)

Now, final velocity = v =0

Also, v = u + a1ta

or 0 = u + [-g(sinA + ucosA)]ta.

or u = g(sinA + ucosA)ta.

Put u = g(sinA + ucosA)tin (2) we get,

s = g(sinA + ucosA)ta- 1/2[g(sinA + ucosA)]ta2.

or s = 1/2[g(sinA + ucosA)]ta2

or s = 1/2[g(sinA + ucosA)](1/2td)2 [From(1)]

or s =1/8[g(sinA + ucosA)]td2.--------------(3)

For downward motion,

Weight component(acting down the slope) = -mgsinA = F1

frictional force(acting up the slope) = umgcosA = F2.

So, net force = F1 + F2 = mg(-sinA + ucosA)

Accn = a2 = g(ucosA - sinA)

As accn is uniform, eqn of motion are applicable.

Displacement(Down the slope) = -s

time of descent = td.

So, -s = utd + 1/2a2td2

As the downard motion starts with u = 0, the above expression becomes,

-s = 1/2a2td2= 1/2[g(ucosA - sinA)]td2------------(4)

Adding (3) and (4) we get,

1/8[g(sinA + ucosA)]td+ 1/2[g(ucosA - sinA)]td= 0

or1/8[g(sinA + ucosA)]td= -1/2[g(ucosA - sinA)]td2.

or1/8[g(sinA + ucosA)]td2= 1/2[g(sinA - ucosA)]td2.

or 4sinA - 4ucosA = sinA + ucosA

or u = 3/5tanA = 3/5tan(30o) [As A = 30o]

or u = (3)1/2/5

Hence, the coefficient of friction = (3)1/2/5

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...