Flag Magical Mathematics[Interesting Approach]> SOLVE !!!!!!!!!...
question mark

Prove that maximum value of a^2*b^3*c^4 subject to a+b+c=18 is 4^2*6^3*8^4.1).....without using AM,GM equality thing...2).......using AM,GM equality thing...PLS EXPLAIN!!!!!!

Shivam Bhagat , 13 Years ago
Grade 9
anser 1 Answers
Aman Bansal

Last Activity: 13 Years ago

Dear Shivam,

Arithmetic mean is always greater than or equal to geometric mean

A.M. >= G.M.

Lets say a,b,c are 3 number such that a+b+c=m

Now you have to find maximum value of (a^2) x (b^3) x(c^4)


Since it is given that a+b+c=m

=> a/2 +a/2 +b/3 +b/3 +b/3 +c/4 +c/4 +c/4 +c/4 = m

=> (a/2 +a/2 +b/3 +b/3 +b/3 +c/4 +c/4 +c/4 +c/4)/9 = m/9

We know that AM >= GM

Max value of GM= AM, which is attained when all the numbers are equal

Max of [ (a/2)^2 x (b/3)^3 x(c/4)^4] ^1/9= (a/2 +a/2 +b/3 +b/3 +b/3 +c/4 +c/4 +c/4 +c/4)/9 = m/9

And for maxima, a/2=b/3=c/4

And max (a/2)^2 x (b/3)^3 x(c/4)^4 = (m/9)^9

max of (a)^2 x (b)^3 x(c)^4= (2^2) (3^3)(4^4) (m/9)^9

Best Of luck

Cracking IIT just got more exciting,It s not just all about getting assistance from IITians, alongside Target Achievement and Rewards play an important role. ASKIITIANS has it all for you, wherein you get assistance only from IITians for your preparation and win by answering queries in the discussion forums. Reward points 5 + 15 for all those who upload their pic and download the ASKIITIANS Toolbar, just a simple  to download the toolbar….

So start the brain storming…. become a leader with Elite Expert League ASKIITIANS

Thanks

Aman Bansal

Askiitian Expert

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...