 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

I was solving this question : $I = \int_0^1xf(x)\,dx = \frac{1}{6}$ $J = \int_0^1 (f(x))^2\,dx = \frac{1}{12}$ $f\left( \frac{1}{2} \right) = ?$ Here $f(x)$ is continuous. So, to solve this I tried to get an integral that contained both the given integrals. So, I assume a parameter $t$ and : $\int_0^1 (f(x) - tx)^2\,dx =0$ $\int_0^1(f(x))^2,dx -2t\int_0^1xf(x)\,dx +t^2\int_0^1x^2\,dx =0$ Putting in the values and solving, I got : $t = \frac{1}{2}$. So then, $(f(x) - 0.5x)^2$ is always positive, so in order for the integral I assumed to evaluate to $0$, the function had to be $0$. $(f(x)-0.5x)^2 =0$ $f(x) = 0.5x$ $f(0.5) = 0.25$ This was correct according to the answer key, but my doubt is that : There can be another function $g(x) \neq tx$ which also satisfies the given conditions, and $g(0.5) \neq 0.25$. So, how can we prove that either $tx$ is the only function satisfying the given conditions, or that for every possible $g(x)$, $g(0.5)$ will have to be 0.25 ?


4 months ago

							Dear student Question is not understandable. Please check and repost the question with an attachment. I will be happy to help you

4 months ago
							Dear student Question is not clear Please upload an image.We will happy to help you.Good luck Cheers

4 months ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Integral Calculus

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 51 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions