Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping
nitish kumar Grade:
        plz sir   provied me full information about    gamma function.beta function, walli's function  .how i solve question from these type of function
8 years ago

Answers : (1)

Badiuddin askIITians.ismu Expert
147 Points

Dear nitish

Gamma function

In mathematics, the Gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function to realcomplex numbers. For a complex number z with positive real part the Gamma function is defined by and

 \Gamma(z) = \int_0^\infty  t^{z-1} e^{-t}\,dt\;

This definition can be extended by analytic continuation to the rest of the complex plane, except the non-positive integers.

If n is a positive integer, then

Γ(n) = (n − 1)!

showing the connection to the factorial function. Thus, the Gamma function extends the factorial function to the real and complex values of n.

Beta function


In mathematics, the beta function, also called the Euler integral of the first kind, is a special function defined by

 \mathrm{\Beta}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt \!


The beta function is symmetric, meaning that

 \Beta(x,y) = \Beta(y,x). \!

It has many other forms, including:

 \Beta(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)} \!
 \Beta(x,y) =   2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,   \qquad \textrm{Re}(x)>0,\ \textrm{Re}(y)>0 \!
 \Beta(x,y) =   \int_0^\infty\dfrac{t^{x-1}}{(1+t)^{x+y}}\,dt,   \qquad \textrm{Re}(x)>0,\ \textrm{Re}(y)>0 \!
 \Beta(x,y) =   \sum_{n=0}^\infty \dfrac{{n-y \choose n}} {x+n}, \!
 \Beta(x,y) = \frac{x+y}{x y} \prod_{n=1}^\infty \left( 1+ \dfrac{x y}{n (x+y+n)}\right)^{-1}, \!
 \Beta(x,y) \cdot \Beta(x+y,1-y) =   \dfrac{\pi}{x \sin(\pi y)}, \!

Wallis Formula

The Wallis formula follows from the infinite product representation of the sine

Please feel free to post as many doubts on our discussion forum as you can. If you find any question Difficult to understand - post it here and we will get you the answer and detailed solution very quickly.
 We are all IITians and here to help you in your IIT JEE preparation.

 All the best.
Askiitians Experts


8 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: Rs. 15,900
  • View Details

Ask Experts

Have any Question? Ask Experts

Post Question

Answer ‘n’ Earn
Attractive Gift
To Win!!! Click Here for details