Flag Integral Calculus> indefinite integration...
question mark

1. integration of(1+cos x/n)*dx * = means square root 2. integration of x^4/1+x^2dx ^2 means raise to the power 2 ^4 means raise to the power 4 3. integration of dx/(1+x^4)^1/4 ^1/4 means raise to the power 1/4 4. integration of (t^3 -1)*/t dt * means square root

Manoj Kumar Jangra , 16 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 11 Years ago

Ans:
I_{1} = \int (1+cos\frac{x}{n})dx
I _{1}= x + nsin(\frac{x}{n}) + constant
I _{2}= \int \frac{x^{4}}{x^{2}+1} dx
I _{2}= \int \frac{x^{4}-1+1}{x^{2}+1} dx
I _{2}= \int( x^{2}+\frac{1}{x^{2}+1}-1) dx
I _{2}= \frac{x^{3}}{3} + tan^{-1}x-x+constant
I _{3}= \int \frac{1}{x^{4}+1}dx
Simply use the partial fraction rule here, we have
I _{3}= \int (\frac{\sqrt{2}x-2}{4(-x^{2}+\sqrt{2}x-1)}+\frac{\sqrt{2}x+2}{4(x^{2}+\sqrt{2}x+1)})dx
I _{3}= \frac{log(\frac{x^{2}+\sqrt{2}x+1}{x^{2}-\sqrt{2}x+1})+2tan^{-1}(\sqrt{2}x+1)-2tan^{-1}(1-\sqrt{2}x)}{4\sqrt{2}}+constant
I _{4}= \int \frac{t^{3}-1}{t}dt
I _{4}= \int (t^{2}-\frac{1}{t})dt
I _{4}= \frac{t^{3}}{3} - ln(t) + constant
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments