Flag Integral Calculus> ∫1-x 7 /x(1+x 7 ) dx equals options ln x ...
question mark

∫1-x7/x(1+x7) dx equals
options
  1. ln x + 2/7 ln (1 + x7) + c
  2. ln x – 2/7 ln (1 – x7) + c
  3. ln x – 2/7 ln (1 + x7) + c
  4. ln x + 2/7 ln (1 – x7) + c

Aditya Kartikeya , 11 Years ago
Grade 10
anser 1 Answers
Jitender Singh
Ans:
Hello Student,
Please find answer to your question below

I = \int \frac{1-x^7}{x(1+x^7)}dx
Using partial fraction, we have
I = \int [\frac{-12x^5+10x^4-8x^3+6x^2-4x+2}{7(x^6-x^5+x^4-x^3+x^2-x+1)}+\frac{1}{x}-\frac{2}{7(x+1)}]dxI = \int [\frac{-12x^5+10x^4-8x^3+6x^2-4x+2}{7(x^6-x^5+x^4-x^3+x^2-x+1)}+log(x)-\frac{2}{7}log(x+1)t = x^6-x^5+x^4-x^3+x^2-x+1
dt = -(-6x^6+5x^4-4x^3+3x^2-2x+1)dx
I = log(x)-\frac{2}{7}log(u)-\frac{2}{7}log(x+1)
I = log(x)-\frac{2}{7}log(x^6-x^5+x^4-x^3+x^2-x+1)-\frac{2}{7}log(x+1)
I = log(x)-\frac{2}{7}log(1+x^7)+c
Option (3) is correct.


Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments