∫1-x7/x(1+x7) dx equals options - ln x + 2/7 ln (1 + x7) + c
- ln x – 2/7 ln (1 – x7) + c
- ln x – 2/7 ln (1 + x7) + c
- ln x + 2/7 ln (1 – x7) + c
∫1-x7/x(1+x7) dx equals
options
- ln x + 2/7 ln (1 + x7) + c
- ln x – 2/7 ln (1 – x7) + c
- ln x – 2/7 ln (1 + x7) + c
- ln x + 2/7 ln (1 – x7) + c






![I = \int [\frac{-12x^5+10x^4-8x^3+6x^2-4x+2}{7(x^6-x^5+x^4-x^3+x^2-x+1)}+\frac{1}{x}-\frac{2}{7(x+1)}]dx](https://files.askiitians.com/cdn1/cms-content/common/latex.codecogs.comgif.latexi_int_frac-12x510x4-8x36x2-4x27x6-x5x4-x3x2-x1_frac1x-_frac27x1dx.jpg)











