Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
Which of the following gives the charge of an electron? Which of the following gives the charge of an electron?
The correct answer is #3.Charge and Mass of the Electron 2 v = 2V ⋅ e me 1 2 (I-3) The moving electrons strike and ionize the Ne atoms which give off light when they recombine, producing a visible beam along the electron track. The sphere is placed in a region where a magnetic field, B, is produced by a current in two coils of wire. B is applied perpendicular to the velocity vector of the electrons resulting in a magnetic force: F = ev × B (I-4) The force is perpendicular to both the velocity and the magnetic field vectors and produces an acceleration a, whose magnitude is given by: |a|= |F| me = v 2 r (I-5) where r is the radius of the circular path of the electron. (Recall that such a force is called a centripetal force and the corresponding acceleration a centripetal acceleration with both vectors directed toward the center of the circle.) Therefore: me v 2 r = e ⋅v ⋅B (I-6) which yields: e me = v B⋅r (I-7) Substituting for v from Eq. 3, we obtain: e me = 1 B⋅r 2V ⋅e me 1 2 (I-8) which simplifies to: e me = 2V ( ) B⋅r 2 (I-9) This equation is correct IF V and B are both constant in space and time so that all the electrons have the same velocity v, and follow the same circular path of radius r. V is applied between two conducting equipotential surfaces by a stable power supply and is therefore well defined.
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -