Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
1.Express in the form of A+iB a) ((1+2i)/(1+i)) n for n = ±1, ±2, ±3, ±4……….. b) ln(1+itan α) 2.Find the sqrt of a) x+ sqrt (-x 4 -x 2 -1) 3.Find the integral solutions of the equations a) (1-i) n =2 n 4.If 1 ω, ω 2 are the three cube roots of the unity then, prove that a) (a+b ω+c ω 2 ) 3 +(a+b ω 2 +c ω) 3 = (2a-b-c)(2b-c-a)(2c-a-b)=27abc if a+b+c = 0 b) 1. (2- ω)(2- ω 2 )+ 2. (3- ω)(3- ω 2 ) +3 (4- ω)(4- ω 2 )+…………+(n-1)(n- ω)(n- ω 2 ) = {n 2 (n+1) 2 /4 } – n 5.If sin α +sin β + sin γ = cos α +cos β + cos γ = 0 then show that , Σcos 3α = 3 cos (α+β+γ) and Σsin 3α = 3 sin (α+β+γ) 6. prove that tan (i ln {(a-ib)/(a+ib)} = 2ab/a 2 -b 2 7. if iz 3 +z 2 -z + i = 0 then show that IzI = 1 8. If IzI = 1 then prove that arg(z 2 +conj z) = ½ arg (z) 9.If α, β are the roots of the equation x 2 -2x+4=0 prove that α n +β n = 2 n+1 cos ). 10. Construct an equation whose roots are nth power of roots of equation x 2 -2x cos θ +1 =0 11.If x=e iθ and 2 ) = nc-1` then prove that 1+c cos θ = (1+nx)(1+ ) 12. prove that I1-conj Z 1 Z 2 I 2 - IZ 1 – Z 2 I 2 = (1-IZ 1 I 2 )(1 – IZ 2 I 2 ) 13. If ABC is atriangle and triangles BCX , CAY , ABZ are drawn on BC , CA , AB , directly similar to one another . Provce that the centroid of XYZ and ABC coincides. 14. IF z = x+iy and w= , IwI = 1 , then find the locus of z. 15.If i i^i^i^……n = A+iB principle values only being considered then prove that a) tan πA = B/A b) A 2 +B 2 = e -π B 16. let Z 1 and Z 2 be the roots of the equation z 2 + pz+q = 0 , where the coefficient p and q may be complex number . Let A and B represents Z 1 and Z 2 respectively . If P 2 = 4q cos 2 α/2 1.Express in the form of A+iB a) ((1+2i)/(1+i))n for n = ±1, ±2, ±3, ±4……….. b) ln(1+itan α) 2.Find the sqrt of a) x+ sqrt (-x4-x2-1) 3.Find the integral solutions of the equations a) (1-i)n=2n 4.If 1 ω, ω2 are the three cube roots of the unity then, prove that a) (a+b ω+c ω2)3+(a+b ω2+c ω)3= (2a-b-c)(2b-c-a)(2c-a-b)=27abc if a+b+c = 0 b) 1. (2- ω)(2- ω2)+ 2. (3- ω)(3- ω2) +3 (4- ω)(4- ω2)+…………+(n-1)(n- ω)(n- ω2) = {n2(n+1)2/4 } – n 5.If sin α +sin β + sin γ = cos α +cos β + cos γ = 0 then show that , Σcos 3α = 3 cos (α+β+γ) and Σsin 3α = 3 sin (α+β+γ) 6. prove that tan (i ln {(a-ib)/(a+ib)} = 2ab/a2-b2 7. if iz3+z2-z + i = 0 then show that IzI = 1 8. If IzI = 1 then prove that arg(z2+conj z) = ½ arg (z) 9.If α, β are the roots of the equation x2-2x+4=0 prove that αn+βn = 2n+1 cos ). 10. Construct an equation whose roots are nth power of roots of equation x2-2x cos θ +1 =0 11.If x=eiθ and 2) = nc-1` then prove that 1+c cos θ = (1+nx)(1+) 12. prove that I1-conj Z1Z2I2 - IZ1 – Z2I2 = (1-IZ1I2)(1 – IZ2I2) 13. If ABC is atriangle and triangles BCX , CAY , ABZ are drawn on BC , CA , AB , directly similar to one another . Provce that the centroid of XYZ and ABC coincides. 14. IF z = x+iy and w= , IwI = 1 , then find the locus of z. 15.If ii^i^i^……n = A+iB principle values only being considered then prove that a) tan πA = B/A b) A2+B2 = e-π B 16.let Z1 and Z2 be the roots of the equation z2+ pz+q = 0 , where the coefficient p and q may be complex number . Let A and B represents Z1 and Z2 respectively . If P2 = 4q cos2α/2
1.Express in the form of A+iB
a) ((1+2i)/(1+i))n for n = ±1, ±2, ±3, ±4………..
b) ln(1+itan α)
2.Find the sqrt of
a) x+ sqrt (-x4-x2-1)
3.Find the integral solutions of the equations
a) (1-i)n=2n
4.If 1 ω, ω2 are the three cube roots of the unity then, prove that
a) (a+b ω+c ω2)3+(a+b ω2+c ω)3= (2a-b-c)(2b-c-a)(2c-a-b)=27abc if a+b+c = 0
b) 1. (2- ω)(2- ω2)+ 2. (3- ω)(3- ω2) +3 (4- ω)(4- ω2)+…………+(n-1)(n- ω)(n- ω2) = {n2(n+1)2/4 } – n
5.If sin α +sin β + sin γ = cos α +cos β + cos γ = 0 then show that ,
Σcos 3α = 3 cos (α+β+γ) and Σsin 3α = 3 sin (α+β+γ)
6. prove that tan (i ln {(a-ib)/(a+ib)} = 2ab/a2-b2
7. if iz3+z2-z + i = 0 then show that IzI = 1
8. If IzI = 1 then prove that arg(z2+conj z) = ½ arg (z)
9.If α, β are the roots of the equation x2-2x+4=0 prove that αn+βn = 2n+1 cos ).
10. Construct an equation whose roots are nth power of roots of equation x2-2x cos θ +1 =0
11.If x=eiθ and 2) = nc-1` then prove that 1+c cos θ = (1+nx)(1+)
12. prove that I1-conj Z1Z2I2 - IZ1 – Z2I2 = (1-IZ1I2)(1 – IZ2I2)
13. If ABC is atriangle and triangles BCX , CAY , ABZ are drawn on BC , CA , AB , directly similar to one another . Provce that the centroid of XYZ and ABC coincides.
14. IF z = x+iy and w= , IwI = 1 , then find the locus of z.
15.If ii^i^i^……n = A+iB principle values only being considered then prove that
a) tan πA = B/A
b) A2+B2 = e-π B
16.let Z1 and Z2 be the roots of the equation z2+ pz+q = 0 , where the coefficient p and q may be complex number . Let A and B represents Z1 and Z2 respectively . If P2 = 4q cos2α/2
P2 = 4q cos2α/2
HI student((1+2i)/(1+i))nRationalize and then make it in euler form i.e reiand then apply demoivre’s theorem to get the answer in a +ibIf you have any problem on this reply on this thread.Please post 1 question at a time. Put other question separately on different post
9 Complete the question. Cos(?)10 Find the roots which will becos θ+i sinθ,cos θ-i sinθi.e. eiθ, e-iθTheir nth powers will beeinθ, e-inθ ...(I)Form the new eqn by (x-a)(x-b)=0where a,b represent the nth powers of roots(from eqn I)
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -