 Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```         the sum of n terms of series:
Q.1>1^2+2*2^2+3^2+2*4^2+5^2+2*6^2+........

Q.2>  The number of proper divisiors of 2^p*6^q*15^r```
8 years ago

```

Q.1>1^2+2*2^2+3^2+2*4^2+5^2+2*6^2+........

sum can be divided into 2 : 1^2 + 3^2 + 5^2 +..... + 2*[ 2^2 + 4^2 +......]
=> 1^2 + 2^2 + 3^2 +...... + n^2 +[ 2^2 + 4^2 +.....]
if n is even,
=> n*(n+1)*(2n+1)/6 + 4*[ (n/2)*(n/2 +1)*(n+1)/6]
if n is odd,
=> n*(n+1)*(2n+1)/6 + 4*[ (n-1/2)*(n-1/2 +1)*(n)/6]

Q.2> The number of proper divisiors of 2^p*6^q*15^r

the above number can be written as 2^p*(2*3)^q*(3*5)^r => 2^(p+q)*3^(q+r)*5^r
so, the number of proper divisors are (p+q)*(q+r)*r

```
8 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Discuss with colleagues and IITians

View all Questions »  ### Course Features

• 728 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 731 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions