Flag Differential Calculus> local maxima and minima...
question mark

Find the polynomial function of degree 6 satifying limit xtends to zero [1+(f(x)/x^3]^1/x=e^2and has local maxima at x=1 and local minima at x=0,2

kavita Sonawane , 13 Years ago
Grade
anser 1 Answers
Jitender Singh

Last Activity: 11 Years ago

Ans:
\lim_{x\rightarrow o}(1+\frac{f(x)}{x^{3}})^{\frac{1}{x}} = e^{2}
\lim_{x\rightarrow o}(1+\frac{f(x)}{x^{3}})^{({\frac{x^{3}}{f(x)}}.\frac{f(x)}{x^{4}})} = e^{2}
e^{\lim_{x\rightarrow 0}\frac{f(x)}{x^{4}}} = e^{2}
{\lim_{x\rightarrow 0}\frac{f(x)}{x^{4}}} = 2
Also, we have
{\lim_{x\rightarrow 0}\frac{f(x)}{x^{3}}} = 0
So, it is clear from this this expression that f(x) has a degree greater than 3.
Let
f(x) = ax^{6}+bx^{5}+cx^{4}
{\lim_{x\rightarrow 0}\frac{ax^{6}+b^{5}+cx^{4}}{x^{4}}} = 2
\Rightarrow c= 2
f^{'}(x) = 5ax^{5}+5bx^{4}+4cx^{3}
f^{'}(1) = 6a(1)^{5}+5b(1)^{4}+4.2(1)^{3} = 0
6a+5b+8=0….....(1)
f^{'}(2) = 6a(2)^{5}+5b(2)^{4}+4.2(2)^{3} = 0
192a + 80b+64=0…......(2)
(1) \times 16
96a + 80b+128=0….....(3)
(2) – (3)
96a - 64 = 0
a = \frac{2}{3}
Put in (1)
b = -\frac{12}{5}
f(x)= \frac{2}{3}x^{6}-\frac{12}{5}x^{5}+2x^{4}
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments