badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12

                        

Find the points on the x-axis whose distance from the line equation (x/3) + (y/4) = 1 is given as 4units.

one month ago

Answers : (1)

SJ
askIITians Faculty
42 Points
							Welcome to Askiitians

Given that,

The equation of a line = (x/3) + (y/4) = 1

It can be written as:

4x + 3y -12 = 0 …(1)

Compare the equation (1) with general line equation Ax + By + C = 0,

we get the values A = 4, B = 3, and C = -12.

Let (a, 0) be the point on the x-axis whose distance from the given line is 4 units.

we know that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by

D = |Ax1+By1+ C|/ √A2+ B2

Now, substitute the values in the above formula, we get:

4 = |4a+0 + -12|/ √42+ 32

⇒4 = |4a-12|/5

⇒|4a-12| = 20

⇒± (4a-12)= 20

⇒ (4a-12)= 20 or -(4a-12) =20

Therefore, it can be written as:

(4a-12)= 20

4a = 20+12

4a = 32

a = 8

(or)

-(4a-12) =20

-4a +12 =20

-4a = 20-12

-4a= 8

a= -2

⇒ a= 8 or -2

Hence, the required points on x axis are (-2, 0) and (8, 0).

Thanks
one month ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 53 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details