Flag Algebra> value of one omega...
question mark

value of one omega

Abhay Shivansh Bhardwaj , 10 Years ago
Grade 11
anser 2 Answers
Gayatri Jayesh Bondriya

Last Activity: 10 Years ago

 
 

The omega constant is a mathematical constant defined by

\Omega\,e^{\Omega}=1.\,

It is the value of W(1) where W is Lambert's W function. The name is derived from the alternate name for Lambert's W function, the omega function.

The value of Ω is approximately 0.5671432904097838729999686622... It has properties that

 e^{-\Omega}=\Omega,\,

or equivalently,

 \ln \Omega = - \Omega.\,

One can calculate Ω iteratively, by starting with an initial guess Ω0, and considering the sequence

 \Omega_{n+1}=e^{-\Omega_n}.\,

This sequence will converge towards Ω as n→∞. This convergence is due to the fact that Ω is an attractive fixed point of the function ex.

It is much more efficient to use the iteration

\Omega_{n+1} = \frac{1+\Omega_n}{1+e^{\Omega_n}},

because the function

 f(x) = \frac{1+x}{1+e^x},

has the same fixed point but features a zero derivative at this fixed point, therefore the convergence is quadratic (the number of correct digits is roughly doubled with each iteration).

A beautiful identity due to Victor Adamchik is given by the relationship

 \Omega=\frac{1}{\displaystyle \int_{-\infty}^{+\infty}\frac{\,dt}{(e^t-t)^2+\pi^2}}-1 .

«»[1]==Irrationality and transcendence==

Ω can be proven irrational from the fact that e is transcendental; if Ω were rational, then there would exist integers p and q such that

 \frac{p}{q} = \Omega

so that

 1 = \frac{p e^{\left( \frac{p}{q} \right)}}{q}

 

 e = \left( \frac{q}{p} \right)^{\left( \frac{q}{p} \right)} = \sqrt[p]{\frac{q^q}{p^q}}

and e would therefore be algebraic of degree p. However e is transcendental, so Ω must be irrational.

Ω is in fact transcendental as the direct consequence of Lindemann–Weierstrass theorem. If Ω were algebraic, e would be transcendental; but Ω=exp(-Ω), so these cannot both be true.

….….….….…..if  you  like  my  advise just click on approve  button  ...and  please type  for any other  quary  if  you  have,,,,,,,,,,,,,,,,,,,

Gayatri Jayesh Bondriya

Last Activity: 10 Years ago

 if  you   satisfy  with   my  answe  so please   just click on approve  button  ...and  if  you  have  any  other  question   or  dought     keep asking
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments