Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
`        r-sided polygons are formed by joining the vertices of a n-sided polygon.Find the number of polygons that can be formed,none of whose sides coincide with those of the n-sided polygon`
2 years ago

Arun
23492 Points
```							Dear Ayush I have solved this using x -sided polygonsa re fomrd from the vertices of n-sided polygon.I will assume that the polygons have to be non-self-intersecting.Number the vertices of the original polygon from 1 to N. Now, there are two possibilities. Either vertex 1 is part of the solution polygon or not.If vertex 1 is part of the solution polygon, vertex 2 and vertex N cannot be. This means that x-1 vertices have to be chosen out of the remaining N-3 vertices such that no two are adjacent. The number of ways of choosing this is equal to the number of integer solutions of y1+y2+....yx=(N-3)-(x-1) with the additional constraints that y1,yx >= 0; y2,y3...yx-1 >=1. This is equal to the number of whole number solutions of y1+y2+..yx=(N-3)-(x-1)-(x-2). This is just (N-x-1)C(x-1).If vertex 1 is not part of the solution polygon, we need to choose x vertices out of the remaining N-1 vertices under the same constraints. Following the same logic (or just a change of variables), we get the number of such polygons to be equal to (N-x)C(x).The total number of polygons is thus (N-x-1)C(x-1)+(N-x)C(x).  RegardsArun (askIITians forum expert)
```
2 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions