×

#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
Let f(x) is a polynomial function of degree 5 with leading coefficient equals to one and f(4) = 0 if curves y=|f(x)| and y=f(|x|) are same then f(1) is equal to ?

```
5 months ago

Karan
8 Points
```							f(x)=(x-4)².x.(x+4)1|f(x)|=f|(x)|x€Rf(5)=(5-4)1.5.(5+4)²=405Therefore f of 5 is equal to 405I hope you got it
```
5 months ago
Utsav Desai
25 Points
```							@KaranBut how do we come to know that f(x)=(x-4)².x.(x+4)1. That is the main doubt with me. Other websites are also giving same solutions, but no one is explaining why...
```
5 months ago
Vikas TU
13786 Points
```							Dear student This is an example of five degree polynomial ,,,,,,,,,,,Hope you will understand ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
```
5 months ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions