Flag Algebra> If a/(b+c)+b/(c+a)+c/(a+b)=1,then a2/(b+c...
question mark

If a/(b+c)+b/(c+a)+c/(a+b)=1,then a2/(b+c)+b2/(c+a)+c2/(a+b)=?

Tushar kanti Das , 9 Years ago
Grade 10
anser 2 Answers
jagdish singh singh
\hspace{-.7 cm}$Given $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} = 1\;,$ Multiply both side by $a+b+c$\\\\\\ So $\bigg(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\bigg)\cdot (a+b+c)=a+b+c$\\\\\\ $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{c(a+b)}{a+b}=a+b+c$\\\\\\ So we get $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b} = 0$
Last Activity: 9 Years ago
Rishi Sharma
Dear Student,
Please find below the solution to your problem.

We know that
a/(b+c) + b/(c+a) + c/(a+b) −1 = 0 which is equivalent to
a^3 + b^3 + abc + c^3 / (a+b)(a+c)(b+c) = 0
also
= a^2/(b+c) + b^2/(c+a) + c^2/(a+b)
= a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 /(a+b)(a+c)(b+c) = 0
but
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 = (a+b+c)(a^3 + b^3 + abc + c^3)
so
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4=0
and consequently a^2/(b+c) + b^2/(c+a) + c^2/(a+b) = 0

Thanks and Regards
Last Activity: 5 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments