 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
if 11 x = 3 y = 99 z then find (1/x) + (1/y) + (1/z) = ? 1) (2/z) – (1/y) 2) (2/z) + (1/y) 3) -1/y 4) 0
if 11x = 3y = 99z then find (1/x) + (1/y) + (1/z) = ?1) (2/z) – (1/y)2) (2/z) + (1/y)3) -1/y4) 0

```
5 years ago

```							11x=3y=99zthis implies that, xlog11=ylog3=zlog99(1/x)+(1/y)+(1/z)=(log11/ylog3) + (1/y) +(log99/ylog3)          {by putting x=ylog3/log11 and z=log99/ylog3}now taking out 1/ylog3 common it becomes=(1/ylog3)(log11+log3+log99)=log(11*33*99)/ylog3 Now,(2/z)-(1/y)=2log99/xlog11- log3/xlog11               {similarly by putting z=xlog11/log99 and y=xlog11/log3}              =log(99*99/3)/xlog11              =log(99*33)/ylog3              =log(99*3*11)/ylog3              =(1/x) +(1/y) +(!/z) therefore the answer should be option(1)please approve if useful  ; )
```
5 years ago
```							Taking log both sides we get xlog11=ylog3=zlog99We have to find 1/z+1/y+1/x-(1)So....Putting values of x,y,z in (1) we will get answer Option (A) I.e.2/z-1/y
```
3 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions