Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

determine all positive integers n such that the polynomial with n+1 terms f(x)=(xpower 4n)+xpower 4(n-1)+....+xpower8+(xpower4)+1 is divisible by g(x)=(xpower 2n)+xpower 2(n-1)+....+xpower4+xpower2)+1.

determine all positive integers n such that the polynomial with n+1 terms f(x)=(xpower 4n)+xpower 4(n-1)+....+xpower8+(xpower4)+1 is divisible by g(x)=(xpower 2n)+xpower 2(n-1)+....+xpower4+xpower2)+1.

Grade:10

2 Answers

Chetan Mandayam Nayakar
312 Points
10 years ago

both f(x) and g(x) are geometric progressions. for f(x) and g(x),a=1,for f(x), r=x4, for g(x), it is x2

f(x)/g(x)=((1-x4(n+1))/(1-x4))((1-x2(n+1))/(1-x2))=(1+x2(n+1))/(1+x2), it is clear from algebra that n+1 is odd, implying that n is any even natural number

'Win exciting gifts by answering the questions on Discussion Forum.'

Chetan Mandayam Nayakar
312 Points
10 years ago

both the num(numerator) and den(denominator) are simple geometric progressions

num/den= ((1-x4(n+1))/(1-x4))(1-x2)/(1-x2(n+1)) = (1+x2(n+1))/(1+x2)

obviously n+1 is odd which implies that n is any even natural number

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free