Solved Problems 1 

Subjective: 

Prob 1. Why standard entropy of an elementary substance is not zero whereas standard enthalpy of formation is taken as zero?    

Sol. A substance has a perfectly ordered arrangement of its constituent particles only at absolute zero. Hence entropy is zero only at absolute zero. Enthalpy of formation is the heat change involved in the formation of one mole of the substance from its elements. An element formed from itself means no heat change.  

Prob 2. Out of carbon (diamond) and carbon (graphite), whose enthalpy of formation is taken as zero and why? 

Sol. The enthalpy of formation of graphite is taken as zero because it is a more commonly found stable form of carbon.      

Prob 3. Justify, an exothermic reaction is always thermodynamically spontaneous. 

Sol. Exothermic reactions are generally thermodynamically spontaneous because even if it is accompanied by decrease of randomness, the heat released is absorbed by the surroundings so that the entropy of the surroundings increases to such an extent that  is positive.      

Prob 4. Is qp always greater than qv? Explain why or why not? 

Sol. qp is not greater than qv always. It depends upon whether Δng is +ve or -ve.    

Prob 5. Justify, many thermodynamically feasible reactions do not occur under ordinary conditions.    

Sol. Under ordinary conditions, the average energy of the reactants may be less than threshold energy. They require some activation energy to initiate the reaction.    

IIT Level Questions 

Prob 6. The standard heats of formation at 298 K for CCl­4 (g), H2O (g), CO2 (g) and HCl (g) are-25.5, -57.8, -94.1 and -22.1 Kcal/mole. Calculate the ΔHo209 for the reaction.    CCl4 (g) + 2H2O(g) ———> CO2(g) + 4HCl (g)   ΔH = ?  

Sol.     ΔH = [ΔHCO2 + 4 × ΔGHCl] – [ΔHCCl1 + 2 × ΔH2O]  

               = [–94.1 + 4 ×22.1] – [–25.5 + 2 × – 57.8] => +135.4 Kcal    

Prob 7. The molar heats of combustion of C2H2 (g), C(graphite) and H2 (g) are 310.62 Kcal, 94.05 Kcal and 68.32 Kcal respectively. Calculate the standard heat of formation of C2H2 (g).  

Sol. The required equation is  

               2C + H2 ——> C2H5; ΔH = ?

Writing the thermochemical equation of the given data  

               (i) C2H2 + 5/2 O2 ——> 2CO2 + H2O      ΔH = –310.62 kcal 

               (ii) C + O2 ——> CO2     ΔH = –94.05 kcal

               (iii) H2 + 1/2 O2 ——> H2O     ΔH = –68.32 kcal 

               (iii) + 2 × (ii) - (i)  

               2C + H2 —— C2H2         ΔH = 54.20 kcal 

Prob 8. The molar heat of formation of NH4NO3 (s) is -367.54 KJ and those of N2O (g) and H2O are 81.46 and -285.8 KJ respectively at 25°C and 1 atmospheric pressure. Calculate ΔH andΔE of reaction.   NH4NO3(s) —— N2O(g) + 2H2O (l)  

2326_equation.JPG  

Prob 9. Determine the value of ΔH and ΔE for the reversible isothermal evaporation of 90.0 gm of water at 100°C. Assume that water vapour behaves as an ideal gas and heat of evaporation of water is 540 cal/gm.  

Sol.        ΔH = 90 × 540 = 48.6 Kcal  

               ΔH = ΔE + PΔV  

               Volume of liquid is negligible as compared to volume of vapour  

               So ΔV = Vvapour  

               ΔH = ΔE + nRT  

               ΔE = 48600 – 90/18 × 2 × 373 = 44.87 kcal  

Prob 10. An athelete is given 100 gm glucose of energy equivalent to 15600 kJ. He utilizes 50% of this gained energy in an event. In order to avoid storage of energy in body, Calculate the wt of water he would need to prespire. Enthalpy of H2O for evaporation is 44 kJ / mole.  

Sol.        Energy gained by athelete = 1560 kJ  

               Energy utilized in event = 50 / 100 × 1560 = 780 kJ  

               Energy left = 1560 – 780 = 780 kJ  

               Since 44 kJ energy used to evaporate = 18 gm H2O  

               780 kJ energy used to evaporate = 18 × 780 / 44 = 319.09 of H2O  

Prob 11. The specific heat at constant volume for a gas 0.075 cal / g and at constant pressure is 0.125 cal / gm. Calculate:  

               (i)   The molecular weight of the gas  

               (ii) Atomicity of gas  

               (iii) Number of atoms in its 1 mole  

Sol.          (i)   Specific heat at constant pressure Cp = 0.125 cal / gm  

                     Specific heat at constant volume, Cv = 0.125 cal / gm  

                     As we know, Cp – Cv = R/M  

                     or, M = R/Cp – Cv = 2/(0.125 – 0.075) = 40  

               (ii) For atomicity,  

                    Hence gas is mono atomic.Y = Cp / Cv = 0.125 / 0.075 = 1.66 

                 (iii) Since gas is mono atomic. Hence 1 mole of gas contains = 6.023 × 1023 atoms  

Prob 12. When 1 mole of ice at and 4.6 mm of Hg is converted to water vapours at a constant temperature and pressure. Find ΔH and ΔE, if the latent heat of fusion of ice is 80 cal / gm and latent heat of vaporisation of liquid water at is 596 cal / gm. The volume of ice in comparison to volume of vapours may be neglected.  

Sol.        Ice ——> vapour  

               ΔH = ΔHf + ΔHv 

                   = 80 × 18 + 596 × 18  

                   = 12168 cal / mole  

               ΔH = ΔE + PΔV  

               ΔV = Volume of vapours at 4.6 mm and 0oC (as Vice = neglible) 

               Now applying PV = nRT  

               PΔV = nRT = 1 × 8.314 × 273 / .18 cal = 543 cal  

               ΔE = ΔH – PΔV  

                     = 12168 – 543  

                     = 11625 cal   

Prob 13. Calculate the standard enthalpy of reaction  

               ZnO(s) + CO(g) ———> Zn(s) + CO2(g)  

               Given 856_equation.JPG  

               ΔHof (CO, g) = –110.53 kJmol–1 

Sol.        We have 856_equation.JPG  

               = 554_equation.JPG 

Prob 14. Calculate the enthalpy of vaporization for water from the following  

               H2(g) + 1/2 O2(g) ——> H2O (g)           ΔH = – 57.0 kcal  

               H2(g) + 1/2 O2(g) ——> H2O(l)             ΔH = – 68.3 kcal  

               Also calculate the heat required to change 1 gm H2O (l) to H2O (g).  

Sol.        H2(g) + 1/2 O2(g) ——> H2O (g);    ΔH = –57.0 kcal ----------------- (1)  

               H2(g) + 1/2 O2(g) ——> H2O (l);     ΔH = – 68.3 kcal------------------(2)  

               Subtracting (2) from (1)  

               H2O (l) ¾® H2O (g) ;                    ΔH = 11.3 kcal                

               Enthalpy of vaporization for H2O = 11.3 kcal  

               Also 18 g H2O requires enthalpy of vaporization = 11. 3 kcal  

               1 g H2O requires 11.3/18 kcal = 0.628 kcal  

Prob 15. The standard enthalpy of combustion of H2, C6H10 and Cyclohexane (C6H12) are – 241,   – 3800, – 3920 kJ mole–1 at 25°C respectively. Calculate the heat of hydrogenation of cyclohexene.  

Sol.       We have to find Δ H for  

               C6H10 + H2 ——> C6H12  

               Given H2 + 1/2 O2 ——> H2O                        ΔH = – 241 kJ --------------- (1)  

               C6H10 + 17/2 O2 ——> 6CO2 + 5H2O             ΔH = – 3800 kJ ---------------(2)  

               C6H12 + 9O2 ——> 6CO2 + 6H2O                   ΔH = – 3920 kJ ---------------(3)  

               Adding equation (1) and (2) and then subtracting equation 3  

               C6H10 + H2 ——> C6H12                              ΔH = – 121 kJ  

               Heat of hydrogenation of cylohexene = – 121 kJ

Related Resources
Third Law of Thermodynamics

THIRD LAW OF THERMODYNAMICS The entropy of a pure...

Level 1 Objective Problems Of Thermodynamics

Level - 1 Objective Problems of Thermodynamics...

Isochoric Reversible Irreversible Process

Isochoric Process A process is said to be...

Enthalpy of Reaction

Enthalpy of Reaction It is the enthalpy change...

Limitations of First Law of Thermodynamics

Limitations of the first Law. Need for the Second...

Enthalpy of System

Enthalpy of a System The quantity U + PV is known...

Heat Capacity and Specific Heat

Heat Capacity and Specific Heat The heat capacity...

Thermodynamic Process and their Types

Thermodynamic Process and their types The...

HESS Law

HESS’S LAW This law states that the amount...

Level 2 Objective Problems Of Thermodynamics

Level 2 Objective Problems of Thermodynamics Level...

Application of Bond Energies

Application of bond energies (i) Determination of...

State of System

State of a System When macroscopic properties of a...

Bomb Calorimeter

BOMB CALORIMETER The bomb calorimeter used for...

Application of Hess Law

Application of Hess's Law 1. Calculation of...

Solved Sample Problems Based on Thermodynamics

Sample Problems Subjective: Level- O 1. Why is the...

Relationship-Free Energy and Equilibrium Constant

Relationship between free Energy and Equilibrium...

GIBBS Free Energy

Gibbs Free Energy This is another thermodynamic...

First Law of Thermodynamics

The first Law of Thermodynamics The first law...

Second Law of Thermodynamics

Second Law of Thermodynamics The second law of...

Objective Questions of Thermodynamics

Objective Questions of Thermodynamics Prob 1 . A...

Miscellaneous Exercises Part I

Miscellaneous Exercises - I Exercise 1: State,...

Macroscopic Extensive Intensive Properties

Macroscopic Properties He properties associated...

Introduction to Thermodynamics

Introduction to Thermodynamics The word...