Application of bond energies

(i) Determination of enthalpies of reactions

Suppose we want to determine the enthalpy of the reaction.


If bond energies given for C ¾ C, C = C, C¾H, and H ¾ H are 347.3, 615.0, 416.2 and 435.1KJ mol-1 respectively.

 ΔH = ΔHC=C + ΔHH–H + 4ΔHC–H – (ΔHC–C + 6ΔHC–H)

= (615.0 + 435.1) – (347.3 + 832.4) => –129.6 KJ

(ii) Determination of enthalpies of formation of compounds

      Consider the formation of acetone.

                                                         H     O     H

                                                         |       ||      |

      3C(g) + 6H(g) + O(g) ———> H — C — C — C — H          ΔH = ? 

                                                         |               |

                                                        H              H

 ΔHf = [3ΔHH–H + 1/2 ΔH0–0 + 3ΔHC(s)—>C(g)] – [2ΔHC–C + 6ΔHC–H + ΔHC=O]

by putting the value of different bond energies you can determine the  ΔHf .

(iii) Determination of resonance energy

If a compound exhibits resonance, there is a considerable difference between the enthalpies of formation as calculated from bond energies and those determined experimentally. As an example we may consider the dissociation of benzene.

      C6H6 (g) ———> 6C(g) + 6H(g)

Assuming that benzene ring consists of three single and three double bonds (Kekule’s structure) the calculated dissociation energy comes out to be 5384.1 KJ from bond energies data.

  ΔHd = 3ΔHC–C + 3ΔHC=C + 6ΔHC–H 

The experimental value is known to be 5535.1 KJ/mol. Evidently, the energy required for the dissociation of benzene is 151 KJ more that the calculated value. The difference of 151 KJ gives the resonance energy of benzene.


Calculate the enthapy of combustion of benzene (l) on the basis of the following.

      (i) Resonance energy of benzene (l) = – 152 kJ mole–1

      (ii) Enthalpy of hydrogenation of cyclohexene (l) = – 119 kJ mole–1

      (iii) (ΔHf0)C6H12 = – 156 kJ mole–1

      (iv) (ΔH0f)H2O = – 285.8 kJ mole–1

     (v) (ΔHf0)CO2 = – 393.5 kJ mole–1

To know more about the study material of engineering and medical exams, please fill up the form given below:

Email Id

Target Year

Related Resources
Third Law of Thermodynamics

THIRD LAW OF THERMODYNAMICS:- In all heat engines,...

Level 1 Objective Problems Of Thermodynamics

Solved Examples on Thermodynamics:- Problem 1 :- A...

Enthalpy of Reaction

Enthalpy of Reaction It is the enthalpy change...

Enthalpy of System

Enthalpy of a System The quantity U + PV is known...

Heat Capacity and Specific Heat

Specific Heat Capacity or Specific Heat [c]:- It...

Thermodynamic Process and their Types

Thermodynamic change or Thermodynamic Process:-...


HESS’S LAW This law states that the amount...

Level 2 Objective Problems Of Thermodynamics

Level 2 Objective Problems of Thermodynamics Level...

Work done during isothermal expansion

Work Done During Isothermal Expansion:- Consider...

GIBBS Free Energy

Gibbs Free Energy This is another thermodynamic...

Introduction to Thermodynamics

Introduction to Thermodynamics:- Thermodynamics:-...

Application of Hess Law

Application of Hess's Law 1. Calculation of...

Relationship-Free Energy and Equilibrium Constant

Relationship between free Energy and Equilibrium...

First Law of Thermodynamics

The First Law of Thermodynamics:- The first law of...

Objective Questions of Thermodynamics

Objective Questions of Thermodynamics and Answers...

Work done during adiabatic expansion

Work Done During Adiabatic Expansion:- Consider...

Macroscopic Extensive Intensive Properties

Macroscopic Properties He properties associated...

Solved Problems Part 1

Solved Problems on Specific Heat, Latent Heat and...

Solved Sample Problems Based on Thermodynamics

Solved Problems on Thermodynamics:- Problem 1:- A...

State of System

Thermodynamic State of a System and Macroscopic...

Second Law of Thermodynamics

Second Law of Thermodynamics:- Entropy:- The...

Specific Heat Capacity and Its Relation with Energy

Specific Heat Capacity and Its Relation with...

Reversible Irreversible Process

Reversible and Irreversible Process:- Reversible...

Miscellaneous Exercises Part I

Miscellaneous Exercises Thermal Physics:- Problem...

Bomb Calorimeter

BOMB CALORIMETER The bomb calorimeter used for...