Total Price: R

There are no items in this cart.
Continue Shopping


“Hurray! You have won the gift voucher. Redeem your points now."


Application of bond energies

(i) Determination of enthalpies of reactions

Suppose we want to determine the enthalpy of the reaction.


If bond energies given for C ¾ C, C = C, C¾H, and H ¾ H are 347.3, 615.0, 416.2 and 435.1KJ mol-1 respectively.

 ΔH = ΔHC=C + ΔHH–H + 4ΔHC–H – (ΔHC–C + 6ΔHC–H)

= (615.0 + 435.1) – (347.3 + 832.4) => –129.6 KJ

(ii) Determination of enthalpies of formation of compounds

      Consider the formation of acetone.

                                                         H     O     H

                                                         |       ||      |

      3C(g) + 6H(g) + O(g) ———> H — C — C — C — H          ΔH = ? 

                                                         |               |

                                                        H              H

 ΔHf = [3ΔHH–H + 1/2 ΔH0–0 + 3ΔHC(s)—>C(g)] – [2ΔHC–C + 6ΔHC–H + ΔHC=O]

by putting the value of different bond energies you can determine the  ΔHf .

(iii) Determination of resonance energy

If a compound exhibits resonance, there is a considerable difference between the enthalpies of formation as calculated from bond energies and those determined experimentally. As an example we may consider the dissociation of benzene.

      C6H6 (g) ———> 6C(g) + 6H(g)

Assuming that benzene ring consists of three single and three double bonds (Kekule’s structure) the calculated dissociation energy comes out to be 5384.1 KJ from bond energies data.

  ΔHd = 3ΔHC–C + 3ΔHC=C + 6ΔHC–H 

The experimental value is known to be 5535.1 KJ/mol. Evidently, the energy required for the dissociation of benzene is 151 KJ more that the calculated value. The difference of 151 KJ gives the resonance energy of benzene.


Calculate the enthapy of combustion of benzene (l) on the basis of the following.

      (i) Resonance energy of benzene (l) = – 152 kJ mole–1

      (ii) Enthalpy of hydrogenation of cyclohexene (l) = – 119 kJ mole–1

      (iii) (ΔHf0)C6H12 = – 156 kJ mole–1

      (iv) (ΔH0f)H2O = – 285.8 kJ mole–1

     (v) (ΔHf0)CO2 = – 393.5 kJ mole–1

To read more, Buy study materials of Thermodynamics comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Chemistry here.


To know more about the study material of engineering and medical exams, please fill up the form given below:

We promise that your information will be our little secret. To know more please see our Privacy Policy
We promise that your information will be our little secret. To know more please see our Privacy Policy


Signing up with Facebook allows you to connect with friends and classmates already using askIItians. It’s an easier way as well. “Relax, we won’t flood your facebook news feed!”