Logarithmic Function

We have observed that y = ax is a monotonic function (either strictly) decreasing or strictly increasing). Hence it is invertible,

                                                  logarithmic-function

So y = ax <=> x = loga y

Where x ε [-∞,∞ ] and y ε [0, ∞]

The inverse exponential function x = loga y is known as logarithmic function. Writing it in conventional form it becomes

y = loga x = f(x), x ε [0,∞]

The inverse exponential function x = loga y is known as logarithmic function. Writing it in conventional form it becomes

y = loga x = f(x), x ε [0, ∞].

Properties of logarithmic Function:

(i)     y = logb x is defined for x > 0, b > 0, b ≠ 1.

(ii)    if logb a = c then a = bc

(iii)    logb 1 = 0

(iv)   logb b = 1

(v)    logb a = 1/loga b

(vi)   logb xy = logb x + logb y

(vii)   logb XY = logb x - logb y

(viii)  logb xm = m logb x

(ix)   logbn x = 1/n logb x

(x)    logb bx = x

(xi)   (b)logbx = x

Illustration: Prove logb a = 1/loga b

Solution:

        Let c = logb a      and   d = loga b

        =>     a = bc        and   b = ad

        =>     a = bc        and   a = b(1/d)

        =>     c = 1/d

        =>     logb a = 1/loga b

Illustration: Prove logb xm = m logb x

Solution:

        Let    c = logb xm         and   d = logb x

        =>     xm = bc              and   x = (b)d

        =>     ((b)d)m = bc

        =>     md = c

        =>     logb xm = m logb x.

AskIITians offers a novel way of teaching where you can prepare for IIT JEE, AIEEE and other engineering examinations for free by sitting at home. You can visit the website askIITians.com to read the study material pertaining to your preparation. Be a part of our online tests and AQAD (A Question A Day) for free and be a winner.

 

Related Resources
Composite Functions Part-2

Composite Functions Problem of finding out fog and...

Constant Function and Identity Function

Constant Function and the Identity Function The...

Bounded and Unbounded Function

Bounded and Unbounded Function Let a function be...

Inequalities

INEQUALITIES The following are some very useful...

Set Theory

Set Theory SET A set is a well-defined collection...

Algebra of Functions

Algebra of Functions Given functions f : D →...

Graphical Representation of a Function Part-1

Graphical Representation of a Function The...

Greatest Integer Function

Greatest Integer Function The function f(x) : R...

Graphical Representation of a Function Part-2

Graphical Representation of a Function...

Polynomial And Rational Function

Polynomial And Rational Function A function of the...

Basic Transformations on Graphs

Basic Transformations on Graphs Drawing the graph...

Inverse Function

Inverse Function Let f : X → Y be a function...

Exponential Function

Exponential Function Exponential and Logarithmic...

Signum Function

Signum Function The signum function is defined as...

Increasing or Decreasing Function

Increasing or decreasing function The function f...

Explicit and Implicit Functions

Explicit and Implicit Functions If, in a function...

Functions One-One/Many-One/Into/Onto

Functions: one-one/many-one/into/onto Functions...

Introduction to Functions

Introduction to Functions Definition of Function:...

Absolute Value Function

Absolute Value Function The function defined as:...

Periodic Function

Periodic Function These are the function, whose...

Even And Odd Function

Even And Odd Function A function f(x) : X → Y...

Linear Function

Linear Function When the degree of P(x) and Q(x)...

Composite Functions Part-1

Composite Functions Another useful combination of...

Invertible Function Part-1

Invertible Function Let us define a function y =...

Solved Examples Part-1

Download IIT JEE Solved Examples on Set, Relations...

Cartesian Product

Cartesian Product Let A and B are two non-empty...