Invertible Function

Let us define a function y = f(x): X → Y. If we define a function g(y) such that x = g(y) then g is said to be the inverse function of 'f'.

Think: If f is many-to-one, g : Y → X will not satisfy the definition of a function.

So to define the inverse of a function, it must be one-one.

Further if f : X → Y is into then there must be a point in Y for which  there is no x. This again violates the definition of function for 'g' (In fact when f is one tone and onto then 'g' can be defined from range of f to domain of i.e. g : f(X) → X.

Hence, the inverse of a function can be defined within the same sets   for x and Y only when it is one-one and onto or Bijective.  

Note: A monotonic function i.e. bijection function is always invertible.

Illustration: Let f : R → R be defined as

                  y = f(x) = x2. Is it invertible?

Solution:

No it is not invertible because this is a many one into function

This is many-one because for x = + a, y = a2, this is into because y does not take the negative real values.

Illustration: Let f : R → [0, α) be defined as y = f(x) = x2. Is it invertible?
(see figure below)

  figure-invertible-or-not

Solution:

No it is not invertible, it because it is many one onto function.

Illustration: Let f : [0, α) → [0, α) be defined as y = f(x) = x2. Is it invertible? If so find its inverse.

Solution:

Yes, it is invertible because this is bijection function. Its graph is shown in figure given below.

 

     graph-for-invertible-function                        

Let y = x2 (say f(x))

        => x = +√y

But x is positive, as domain of f is [0, α)

         =>  x = + √y

Therefore Inverse is y = √x = g(x)
 

                                             f-and-g-are-inverse

Figure (A)

        f(g(x)) = f(√x) = x, x> 0

        g(f(x)) = g(x2) = √x2 = x, x > 0

i.e. if f and g are inverse of each other then f(g(x)) = g(f(x)) = x

Illustration: How are the graphs of function and the inverse function related? These graphs are mirror images of each other about the line y = x.

Solution:

Also, if the graph of y = f(x) and y = f-1 (x), they intersect at the point where y meet the line y = x.

                Graphs-of-function-and-its-inverse

 

Figure (B)

Graphs of the function and its inverse are shown in figures given above as Figure (A) and (B)

For Figure (A)

        y = f(x) = x2; f : [0, ∞) → [0, ∞)

 

Examples:

1. Define y = f(x) = x2 in some other ay so that its inverse is possible.

2. What is the inverse of y = loge (x + √(x2 + 1))

Ans.1         f :  (-α, 0]  →  [0, α)

                y = f(x) = x2 and its inverse is

                y = -√x     (Figure B)

Ans.2         y = (ex - ex)/2

  

AskIITians is a group of IITians which provide you free online courses and a good professional advice for IIT JEE, AIEEE and other Engineering Examination preparation. You can visit askIITians.com to study topics pertaining to the IIT JEE and AIEEE syllabus for free. You can also register here to have a demonstration class to have a feel of Online classroom programmes offered by askIITians.

Related Resources
Composite Functions Part-2

Composite Functions Problem of finding out fog and...

Bounded and Unbounded Function

Bounded and Unbounded Function Let a function be...

Set Theory

Set Theory SET A set is a well-defined collection...

Algebra of Functions

Algebra of Functions Given functions f : D →...

Graphical Representation of a Function Part-1

Graphical Representation of a Function The...

Greatest Integer Function

Greatest Integer Function The function f(x) : R...

Graphical Representation of a Function Part-2

Graphical Representation of a Function...

Polynomial And Rational Function

Polynomial And Rational Function A function of the...

Constant Function and Identity Function

Constant Function and the Identity Function The...

Inequalities

INEQUALITIES The following are some very useful...

Basic Transformations on Graphs

Basic Transformations on Graphs Drawing the graph...

Inverse Function

Inverse Function Let f : X → Y be a function...

Exponential Function

Exponential Function Exponential and Logarithmic...

Signum Function

Signum Function The signum function is defined as...

Increasing or Decreasing Function

Increasing or decreasing function The function f...

Explicit and Implicit Functions

Explicit and Implicit Functions If, in a function...

Functions One-One/Many-One/Into/Onto

Functions: one-one/many-one/into/onto Functions...

Introduction to Functions

Introduction to Functions Definition of Function:...

Absolute Value Function

Absolute Value Function The function defined as:...

Periodic Function

Periodic Function These are the function, whose...

Even And Odd Function

Even And Odd Function A function f(x) : X → Y...

Logarithmic Function

Logarithmic Function We have observed that y = a x...

Linear Function

Linear Function When the degree of P(x) and Q(x)...

Composite Functions Part-1

Composite Functions Another useful combination of...

Solved Examples Part-1

Download IIT JEE Solved Examples on Set, Relations...

Cartesian Product

Cartesian Product Let A and B are two non-empty...