Composite Functions

Another useful combination of two functions f and g is the composition of these two functions. Let f : X → Y and g : Y → Z be two functions.

                       composite-functions

We define a function h : X → Z by setting h(x) = g(f(x). To obtain h(x), we first take the f-image f(x), of an element x in X so that f(x) ε Y, which is the domain of g(x) and then take the g-image of f(x), that is, g(f(x)), which is an element of Z. The scheme is shown in the figure.

The function h, defined above, is called the composition of f and g and is written gof. Thus (gof)(x) = g(f(x)). Domain of gof = {x : x in domain f, f(x) in domain g}.

e.g. Let f : R → R be a function defined by f(x) = x2 + 4 and g[0, ∞) → R be a function defined by g(x) = √x. Then gof(x) = g(f(x)) = √(x2 + 4). Domain of gof = R. Thus we have gof : R → R defined by (gof)(x) = √(x2 + 4). Similarly, we shall have fog : [0, ∞) → R defined by (fog)(x) = x + 4. Note that (gof)(x) ≠ (fog)(x).

Illustration: Two functions are defined as under:

             equation-for-fog-and-gof

Find fog and gof.

Solution: (fog)(x) = f(g(x))  equation-for-fog

 

                Let us consider, g(x) < 1 :

                (i) x2 < 1, -1 < x < 2  =>  -1 < x < 1, -1 < x < 2 => -1 < x < 1

                (ii) x2 + 2 < 1, 2 < x < 3  =>  x < -1, 2 < x < 3 => x = φ

                Let us consider, 1 <  g(x)  <  2,

                (iii) 1 < x2 < 2,  -1 < x < 2

                        => x ε [-√2, -1) υ (1,√2] ,  -1 < x < 2  =>  1 < x < √2

                (iv) 1 < x+2 < 2, 2 < x < 3 => -1 < x < 0, 2 < x < 3, x = φ

                   equation-for-gof

                Let us consider -1 < f(x) < 2 :

                (i)     -1 < x+1 < 2, x < 1 => -2 < x < 1, x < 1 => -2 < x < 1

                (ii)    -1 < 2x+1 < 2, 1 < x < 2 => -1 , x < ½, 1 < x < 2 => x= φ

                Let us consider 2 < f(x) < 3:

                (iii)    2 < x+1 < 3 ,  x < 1 => x < 2 , x < 1 => x = 1

                (iv)   2 < 2x+1 < 3, 1 < x < 2 => 1 < 2x < 2, 1 < x < 2

                        => ½  <  x  1 , 1 < x < 2 => x = φ

                             equation-g(f(x))

                If we like we can also write g(f(x)) = (x+1)2, -2 < x < 1.

Related Resources
Composite Functions Part-2

Composite Functions Problem of finding out fog and...

Constant Function and Identity Function

Constant Function and the Identity Function The...

Bounded and Unbounded Function

Bounded and Unbounded Function Let a function be...

Inequalities

INEQUALITIES The following are some very useful...

Set Theory

Set Theory SET A set is a well-defined collection...

Algebra of Functions

Algebra of Functions Given functions f : D →...

Graphical Representation of a Function Part-1

Graphical Representation of a Function The...

Greatest Integer Function

Greatest Integer Function The function f(x) : R...

Graphical Representation of a Function Part-2

Graphical Representation of a Function...

Polynomial And Rational Function

Polynomial And Rational Function A function of the...

Basic Transformations on Graphs

Basic Transformations on Graphs Drawing the graph...

Inverse Function

Inverse Function Let f : X → Y be a function...

Exponential Function

Exponential Function Exponential and Logarithmic...

Signum Function

Signum Function The signum function is defined as...

Increasing or Decreasing Function

Increasing or decreasing function The function f...

Explicit and Implicit Functions

Explicit and Implicit Functions If, in a function...

Functions One-One/Many-One/Into/Onto

Functions: one-one/many-one/into/onto Functions...

Introduction to Functions

Introduction to Functions Definition of Function:...

Solved Examples Part-1

Download IIT JEE Solved Examples on Set, Relations...

Absolute Value Function

Absolute Value Function The function defined as:...

Periodic Function

Periodic Function These are the function, whose...

Invertible Function Part-1

Invertible Function Let us define a function y =...

Even And Odd Function

Even And Odd Function A function f(x) : X → Y...

Logarithmic Function

Logarithmic Function We have observed that y = a x...

Linear Function

Linear Function When the degree of P(x) and Q(x)...

Cartesian Product

Cartesian Product Let A and B are two non-empty...