Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```        prove that:
cos2A = 2sin2B + 4cos(A + B)sinAsinB + cos2(A + B)```
7 years ago

510 Points
```										LHS =2sin2B + 4cos(A+B)sinAsinB + cos2(A+B) .................1
cos2(A+B) = 2cos2(A+B) - 1                                                             [using formula ,cos2a=2cos2a - 1]
putting this in 1
LHS= 2sin2B+4cos(A+B)sinAsinB + 2cos2(A+B) - 1
=2sin2B - 1 + 2cos(A+B)[cos(A+B) + 2sinAsinB]
=2sin2B - 1 +2cos(A+B)[cosAcosB -sinAsinB +2sinAsinB]                         [using formula,cosA+B =COSACOSB-SINASINB]
=2sin2B - 1 + 2cos(A+B)[cos(A-B)]                                                [using formula ,cosACOSB +SINASINB=COSA-B]
=2sin2B - 1 + 2[cos2A -sin2B]                                                            [COS(A+B)COS(A-B)=COS2A-SIN2B]
=2cos2A-1
=cos2A = RHS
hence proved

```
7 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Trigonometry

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details