Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
        (2x^2-3x+8)dx/(2x^3-4x^2+8x-1)
5 years ago

Jitender Singh
IIT Delhi
158 Points
										Ans:$I = \int \frac{2x^{2}-3x+8}{2x^{3}-4x^{2}+8x-1}dx$We will proceed this question by partial fraction rule.$f(x) = 2x^{3}-4x^{2}+8x-1$Roots of f(x):$x_{1} = .1333$$x_{2} = .93335+1.69707i$$x_{3} = .93335-1.69707i$$\frac{2x^{2}-3x+8}{2x^{3}-4x^{2}+8x-1} = \frac{a}{x-x_{1}} + \frac{b}{x-x_{2}}+\frac{c}{x-x_{3}}$We have values of a, b & c from here,$I = \int (\frac{a}{x-x_{1}}+\frac{b}{x-x_{2}}+\frac{c}{x-x_{3}})dx$$I = aln|x-x_{1}| + bln|x-x_{2}| + cln|x-x_{3}| + constant$Thanks & RegardsJitender SinghIIT DelhiaskIITians Faculty

3 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Integral Calculus

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details