MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Menu
M.vs vivek vardhan Grade: 12
        

If I(n)=Int.limitsfrom 0 to pie/4 Tan^nxdx,then for any positive integer n, n(I(n-1)+I(n+1)=....


Ans:1..... Give me the complete solution

6 years ago

Answers : (1)

vikas askiitian expert
510 Points
										

K = integral (n[In-1  +  In+1] )      lim 0 to pi/4                .........................1


       In+1= integral  {tann+1xdx}        lim 0 to pi/4           


            =integral {tan2xtann-1xdx}     lim 0 to pi/4              


            =integral {(sec2x-1)tann-1xdx)}     lim 0 to pi/4


            =integral {-tann-1xdx + sec2xtann-1dx}


In-1 =  tann-1xdx so


 In+1 = -In-1 + sec2xtann-1xdx           lim 0 to pi/4         


 In+1 + In-1 = tann-1sec2xdx             lim 0 to pi/4 ...............................2


putting 2 in 1 we get


 K = ntann-1xsec2xdx          lim 0 to pi/4


     now put tanx =t


               sec2xdx =dt


K =ntn-1dt        lim 0 to 1


   =tn        lim 0 to 1


    =1

6 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: R 15,000
  • View Details
Get extra R 2,500 off
USE CODE: SSP11
Get extra R 1,600 off
USE CODE: SSP11

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details