MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
KHITISH BISWAL Grade: 12
        Solve d^2y/dt + dy/dt = t^2+2t Given that y(0)=4,y'(0)=2
7 years ago

Answers : (1)

Jitender Singh
IIT Delhi
askIITians Faculty
158 Points
										
Ans:
\frac{d^{2}y}{dt^{2}} + \frac{dy}{dt} = t^{2}+2t
\int d(\frac{dy}{dt}) + \int \frac{dy}{dt} = \int (t^{2}+2t)dt
(\frac{dy(t)}{dt}) + y(t) = \frac{t^{3}}{3} + t^{2} + c
(\frac{dy(0)}{dt}) + y(0) = \frac{(0)^{3}}{3} + (0)^{2} + c
4 + 2 = c
c = 6
(\frac{dy(t)}{dt}) + y(t) = \frac{(t)^{3}}{3} + (t)^{2} + 6
e^{t}(y^{'}(t) + y(t)) = e^{t}(\frac{(t)^{3}}{3} + (t)^{2} + 6)
\int e^{t}(y^{'}(t) + y(t))dt = \int e^{t}(\frac{(t)^{3}}{3} + (t)^{2} + 6)dt
\int (e^{t}.y(t))^{'}dt = \int e^{t}(\frac{(t)^{3}}{3} + (t)^{2} + 6)dt
e^{t}.y(t) = \frac{1}{3}.e^{t}(t^{3}+18) + constant
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
3 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies
  • Complete JEE Main/Advanced Course and Test Series
  • OFFERED PRICE: Rs. 15,900
  • View Details

Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details