Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
        If f(x) is a polynomial function which satisfy the relation (f(x))2 f"(x)=(f"(x))3 f'(x), f'(0)=f'(1)=f'(-1)=0,f(0)=4, f(±1)=3, then f"(i) (where i=√7) is equal to
Please show complete solution
5 years ago

Jitender Singh
IIT Delhi
158 Points
										Ans:$f'(0) = f'(-1) = f'(1) = 0$$\Rightarrow f'(x) = ax(x-1)(x+1), a = constant$$\int df(x) = \int ax(x-1)(x+1)dx$$f(x) = a(\frac{x^{4}}{4}-\frac{x^{2}}{2}) + c, c = constant$$f(0) = a(\frac{0^{4}}{4}-\frac{0^{2}}{2}) + c = 4$$\Rightarrow c = 4$$f(\pm 1) = a(\frac{(\pm 1)^{4}}{4}-\frac{(\pm 1)^{2}}{2}) + 4 = 3$$\frac{-a}{4} = -1$$a = 4$$f(x) = x^{4}-2x^{2}+4$$f'(x) = 4x^{3}-4x$$f''(x) = 12x^{2}-4$$f''(\sqrt{7}) = 12(\sqrt{7})^{2}-4 = 80$Thanks & RegardsJitender SinghIIT DelhiaskIITians Faculty

3 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Differential Calculus

View all Questions »
• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: Rs. 15,900
• View Details

Post Question