Click to Chat

1800-2000-838

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: R

There are no items in this cart.
Continue Shopping
Get instant 20% OFF on Online Material.
coupon code: MOB20 | View Course list

Get extra R 440 off
USE CODE: MOB20

```				   I am 9th std student preparing for IIT-JEE.
Please send me the proof of heron's formula
```

6 years ago

Share

```										A Proof of the Pythagorean Theorem From Heron's  Formula
Let the sides of a triangle have lengths a,b and c.  Introduce the semiperimeter p = (a + b + c)/2 and the area S.  Then Heron's  formula asserts that

S2 = p(p - a)(p - b)(p - c)

W. Dunham analyzes the original Heron's proof in his Journey  through Genius.
For the right triangle with hypotenuse c, we have S = ab/2.  We'll modify the right hand side of the formula by noting that

p - a = (- a + b + c)/2,  p - b = (a - b + c)/2,  p - c = (a + b - c)/2

It takes a little algebra to show that

16S2
= (a + b + c)(-  a + b + c)(a - b + c)(a + b - c)

= 2a2b2 + 2a2c2 + 2b2c2 - (a4 + b4 + c4)

For the right triangle, 16S2 = 4a2b2.  So we have

4a2b2= 2a2b2 +  2a2c2 + 2b2c2 - (a4 + b4 + c4)

Taking all terms to the left side and grouping them yields

(a4 + 2a2b2 + b4)  - 2a2c2 - 2b2c2 + c4 = 0

With a little more effort

(a2 + b2)2 - 2c2(a2 + b2) + c4 = 0

And finally

[(a2 + b2) - c2]2 = 0

Remark
For a quadrilateral with sides a, b,  c and d inscribed in a circle there exists a  generalization of Heron's formula discovered by Brahmagupta. In this  case, the semiperimeter is defined as p = (a + b + c + d)/2. Then the following formula holds

S2 = (p - a)(p - b)(p - c)(p - d)

Since any triangle is inscribable in a circle,  we may let one side, say d, shrink to 0. This leads to Heron's  formula.
```
6 years ago

# Other Related Questions on Algebra

If alpha is a real root of the equation ax 2 +bx+c and beta is a real root of equation -ax 2 +bx+c. Show that there exists a root gama of the equation (a/2)x 2 +bx+c which lies between alpha...

 Ajay 6 months ago

Small Mistake in last para posting again..............................................................................................................

 Ajay 6 months ago

We have Similarly, So if P(x) = a/2 x 2 +bx +c, then and are off opposite sign and hence there must exist a root between the two numbers.

 mycroft holmes 6 months ago
In the listed image can you tell me how beta*gamma = 2 ….. . . .. ??

The value of gamma is still not correct, either printing mistake or you gave me wrong value. The correct value of gamma is below

 Ajay 5 months ago

Thankyou so much............................. …......................................................................!

 Anshuman Mohanty 5 months ago

Yes sorry..... . . . .it is not so clear.. ok the values are beta = α + α^2 + α^4 and gamma = α^3 + α^5 + α^7

 Anshuman Mohanty 5 months ago
if |z - i| Options: a*) 14 b) 2 c) 28 d) None of the above

If |z-i| = ?? PLs complete the question

 Nishant Vora one month ago

Got it! [z + 12 – 6 i ] can be rewritten as [ z – i + 12 – 5 i] => | z – i | and => |12 – 5 i | = sqrt ( 12^2 + 5^2) = 13......................(2) => | z + 12 – 6 i | => | z + 12 – 6 i |...

 Divya one month ago

I tried posting the question several times, it kept cutting off the rest of the question. Here: If | z-1| Options: a*) 14 b) 2 c) 28 d) None of the above

 Divya one month ago
sin^2 6°-sin^2 12°+sin^2 18°-sin^2 24°......15 solve it Urgent

Ajay, the complete qution isSolution is sin^2 6°-sin^2 12°+sin^2 18°-sin^2 24°..... upto 15 terms. sin 78°=0 sin 42°+sin 54°+ sin 66°+ + sin 18° sin 6°+ where )=0.5 (your required answer),...

 Kumar 4 months ago

Not any people get my answer why. You can no give answer my question I am join this site

 Vivek kumar 6 months ago

Hello If you want to get the solution quick you should post your question in clear manner. Its not clear what you wnat us to solve, and what does 15 at the end of question means?

 Ajay 6 months ago
Solve: (sin theta+cosec theta)^2 + (cos theta +sec theta)^2- (tan^2 theta + cot ^2 theta)^2

What needs to be solved here ? The question is incomplete....................................................................

 Ajay 6 months ago

i don’t know how to do this...............................................................................................

 Saravanan 2 months ago

this is the question :: Solve: (sin theta+cosec theta)^2 + (cos theta +sec theta)^2 - (tan^2 theta + cot ^2 theta)

 Naveen Shankar 6 months ago
solutions to Question no. 17,18 19 and 20 pleaseeeeeeeeeee

Let the feet of the altitudes on BC, AC, AB, be D,E,F resp. Let the orthocenter be H. The following can be proved easily: ​1. HDCE and HFBD are cyclic quadrilaterals. Then chord HE subtends...

 mycroft holmes one month ago

Draw which is Isoceles as OB = OC. Now which means . Let D, be the foot of the perp from O on BC ( which is also the midpoint of BC). Then OD = OC sin (OBC) = R cos A. Hence the required...

 mycroft holmes one month ago

a cos A = b cos B 2R sin A cos A = 2R sin B cos B sin 2A = sin 2B Either A = B (isoceles or equilateral) or 2A = 180 o – 2B so that A+B = 90 o .(Right-angled)

 mycroft holmes one month ago
View all Questions »

• Complete JEE Main/Advanced Course and Test Series
• OFFERED PRICE: R 15,000
• View Details
Get extra R 3,000 off
USE CODE: MOB20

Get extra R 440 off
USE CODE: MOB20

More Questions On Algebra